
L8 -- SIFT + Near-Neighbor Search
[Jeff Phillips - Utah - Data Mining]

Real Data:
text documents
key words searches
image data

Abstract Data w/ abstract distance:
sets of objects      |  Jaccard distance
strings              |  edit distance
SIFT features R^128  |  Euclidean distance

What are SIFT features:  
   (scale-invariant feature transform)

What is an image:
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each [] has rgb-values  (lets assume [0,1])

Each [] might have a SIFT feature
 -only collect features for extremal points in "scale space"
   corners of object in pictures, where color changes abruptly
 -determine "scale" sigma at which feature is sharpest

Gradient Histogram:
[1][2][3]
[4][X][5]
[6][7][8]
-->  gradient histogram:
something like: [1-X][2-X][3-X][4-X][5-X][6-X][7-X][8-X]
  shows relative change in magnitude

Consider 4x4 grid with scale sigma, vertex at X



|  |  | |  |  |
| 1| 2| | 3| 4|
------- -------
|  |  | |  |  |
| 5| 6| | 7| 8|
-------X-------
|  |  | |  |  |
| 9|10| |11|12|
------- -------
|  |  | |  |  |
|13|14| |15|16|

for each grid cell i in [16], 
  compute a gradient histogram (8 bins)  H_i
  make it relative to H_X  
  something like: H_i = H_X/H_i

X has 8 x 16 = 128 vector V_X
  normalize so ||V_X|| = 1
  if any component is > .2, reset to .2 and renormalize

Compare distance between d(V_X,V_Y) as Euclidean distance.
Use approximate search to speed things up.

--------------------------
How to find (approximate) near neighbors

Set P subset R^d  |P| = n.  d is large (e.g. 128)

Query point q \in R^d
p^* = arg min_{p \in P} d(p,q)

Goal:  find p in P s.t.
  dist(p,q) <= (1+eps)dist(p^*,q)

centered at q:
circle C_r radius r = d(p^*,q)
circle C_r,eps radius (1+eps)r   
annulus C_r,eps \ C_r  == don't care

LSH not explicitly designed for ANN.  Returns all within r, maybe within 
(1+eps)r.  Where r is fixed.  
Can run with progressively larger values of r.  But loses some factor.  but 
works ok for very high d  (see Andoni code:  google "LSH")



**kd-tree:
divide space by R^d into two points split in dimension i 
  alternate i in [d] in cyclic order
  each step have half remaining points each side

**quad-tree:
divide space into 2^d axis-aligned rectangles each round, 
  each has at most n/2 points  (hopefully less)

**R-tree:
split points into two covering rectangles each round
  searching in O(2^d log n)

**B-tree:  (dim = 1)
split points into B sub-intervals each round.  
  each "node" stored on one disk block of size B
  hard to implement efficiently for d>1

####   Stop when leaf has CONSTANT > 1 number of points

Now given a query q in R^d:  
  - find leaf which contains q (find closest point)
  - search nearby nodes to see if closer
  - don't search sub-trees if **all** further than (1-eps)d(p',q)

* may need to search many subtrees.  Runtime ~~ O(2^d log n) or O(log^d n)
* adds overheard to linear scan  (IO efficient)
* with eps=0, linear scan cheaper when d > 5 or so

--------
Problem w/ high dimensions
 - want ball, get cube
   volume ball(d, rad=1) = pi^{d/2}/Gamma(d/2+1) rad^d
                         ~ pi^{d/2}/((d/2)!)
                           gets small  --> 0
   volume cube(d,rad=1) = 2^d
                          gets large   --> infty

So with rectilinear search, we get everything in the d-cube, but want 
everything in d-ball

--------
Approximate methods can go up to maybe d=8-20.
Google: "ANN" 3rd hit (which is amazing for the name Ann)



--------
Advanced techniques:
how to choose better split?  
 - cluster all data (k-means -> split k ways)
 - project to k-dim, split 2^k ways.  
improve greatly if data is intrinsically in lower dimensions.  


