
L23 -- Communities
[Jeff Phillips - Utah - Data Mining]

Social Network == Large (directed) graph

G = (V,E)

Draw Example

Mid 2000s very exciting time.
 - People studying networks for years
 - Much anecdotal evidence on small graphs 10s to 100s
 + Finally in 2000s, large scale networks --> could see effects
 + Could collect data (explosion of work)

Example question:
Why do people join groups?

Group C

Two people not in C: X, Y
 - X has three friends in C, all connected
 - Y has three friends in C, none connected
Who more likely to join?

for
X: safety/trust in friends who know each other
Y: independent support

Answer: X
 --> tightly connected subsets in graphs

so: HOW DO WE FIND COMMUNITIES

Option 1:
 Local properties:
 + how many incoming/out-going edges
 + count triangles
 (A,B) and (A,C) ->
 + more likely (B,C)

 + B C trust each other
 + A incentive to bring B,C together
 + if A has few triangles, more depressed (empirical study)
 - Easily spoofed

Option 2:
 Spectral Clustering
 (already covered, L11)

Option 3:
 Betweenness

betw((a,b)) = # shortest paths that use edge (a,b)

How to interpret betw(a,b)?
 large score is bad (between communities, not within community)

How to calculate (a,b)?
 <all-pairs shortest path>
 For each v in V
 1: DFS on entire graph -> build DAG
 2: Walk from each leaf back-up, adding counter to each edge
 (need to split walk up if multiple paths)

Explain on Example

What about ties?

How efficient?
 O(|V| * |E|)
Very slow. Various sampling attempts, none satisfactory

Use to find communities?
 - remove high-betweeness edges...

Also:
 High betweenness edges are important for keeping network connected!

Option 4:
Modularity:
 Q = (# edges in group) - (expected number in group)
actual A_{i,j} = {1 if edge, 0 otherwise}
E_{i,j} = d_i * d_j / 2|E|
 d_i = degree if node i
 |E| = number of nodes (allows self edges)

Q(C) = (1/4m) [sum_{ij in C} (A_{i,j} - E_{i,j|)]
 in [-1,1]
 positive if number edges exceed expectation
 Q in [0.3,0.7] significant

 (better statistical ways to look at this SSS)
 (always some high-modularity cluster, but is it significant?)

[bias towards large communities (with > sqrt{|E|} edges)]

How to optimizes modularity directly?
 Use Spectral Clustering!
 + Finding leading eigenvector.
 + Find best split.
 If split increases modularity, recurse
 Else: stop

 (if too slow, use PageRank repetition to estimate eigenvector!)

Alternative: Build bottom-up (Hierarchical clustering)
 + Greedy Nibble: Add one best node at a time, repeat
 + Greedy Chomp: Add (or subtract) all nodes which individually improve
modularity
 --> local minimum

To find smaller communities:
 --> Look for complete graphics (cliques)
 ---> complete bipartite graphs K_{s,t}

