
L20 -- Markov Chain
[Jeff Phillips - Utah - Data Mining]

Graph G = (E,V)
 V = vertices {a,b,c,d,e,f,g,h}
 E = edges {(a,b), (a,c), (a,d), (b,d), (c,d), (c,e), (e,f), (e,g), (f,g),
(f,h)}
 unordered pairs

Draw graph:
 a b c d e f g h
a 0 1 1 1 0 0 0 0
b 1 0 0 1 0 0 0 0
c 1 0 0 1 1 0 0 0
d 1 1 1 0 0 0 0 0
e 0 0 1 0 0 1 1 0
f 0 0 0 0 1 0 1 1
g 0 0 0 0 1 1 0 0
h 0 0 0 0 0 1 0 0

adjacency matrix
--

Each v in V is a state.
If at b, represent state as
q = [0 1 0 0 0 0 0 0]^T

Can "think of" fractional state
q = [1/2 0 0 1/2 0 0 0 0]^T
1/2 at a and 1/2 at d

probability of being in each state:
each q[i] >= 0 and sum_i q[i] = 1

--

Transition matrix P = normalized adjacency matrix
 a b c d e f g h
a 0 1/2 1/3 1/3 0 0 0 0
b 1/3 0 0 1/3 0 0 0 0
c 1/3 0 0 1/3 1/3 0 0 0
d 1/3 1/2 1/3 0 0 0 0 0
e 0 0 1/3 0 0 1/3 1/2 0
f 0 0 0 0 1/3 0 1/2 1
g 0 0 0 0 1/3 1/3 0 0
h 0 0 0 0 0 1/3 0 0

then given a state q, we can "transition" to the next state by
 q_1 = P*q
This one "step" of a "Markov Chain".

"Markov" means that each state only depends on previous state.

next step
q_2 = P*q_1 or
 = P*P=q or
 = P^2*q

q_n = P^n*q
 where P^n = P*P*P* ... n times ... *P

Can think of as a randomized random walk.
 + start state q=q_0.
 + each step, takes one path at random
 + q_n is probability distribution of state after i steps
 + thus each column of P^n positive, sums to 1 for all n

Markov Chain is **ergodic** if
 exists some t such that for all n>=t then
 each entry in P^n is positive.

--> for any q, then
 q_n = P^n q
is positive in all elements
--> after t steps, always have *some* probability of being anywhere.

When is a chain not ergodic?
 + cyclic
 P = [0 1]
 [1 0]
 always alternates states in even/odd states
 --> can be larger and more irregular, uncommon in practice

 + has absorbing + transient states
 P based on *directed* graph
 P = [0 1/2 1/2 0]
 [1/2 0 1/2 1]
 [1/2 1/2 0 0]
 [0 0 0 0]
 state d always goes to b, but can never return to d.
 also...

 P = [0 1/2 1/2 0]
 [1/2 0 1/2 1/2]
 [1/2 1/2 0 0]
 [0 0 0 1/2]
 may stay at d (w.p. 1/2) but state "seeps" from d to b (and then a,c)

 (a,b,c) = absorbing, d = transient

 + not connected
 P = [1/2 1/2 0 0]
 [1/2 1/2 0 0]
 [0 0 2/3 1/2]
 [0 0 1/3 1/2]
 (a,b) cannot reach (c,d) and vice-versa
--

Consider an ergodic Markov Chain (P,q)

AMAZING property

let P^* = P^n as n -> infty
 then q_* = P^* q
 is **NOT** dependent on q

--> That is, for all starting states q, the final state is q_*

--> as we do a random walk, we will eventually be in the same expected state.

Note that q_* = P^* q = P^{*+1} q
 so q_* = P q_*
--> If state distribution is initially q_*, then already in final
distribution.
 q_* second eigenvector of P
 second eigenvalue determines rate of convergence
 --> smaller <-> faster convergence

--
--

Metropolis Algorithm (MCMC)
 Metropolis, Rosenbluth, Rosenbluth, Teller, Teller 1953
 (Boltzman dist, Manhattan project)
 Hastings 1970
 (more general)

each state v in V has weight associated with it

 w(v) sum_{v in V} w(v) = W

Want to land in state v w.p. w(v)/W

 --> V might be very large, and W unknown.
 --> V can be "continuous"
 "probe-only" can only measure w(v) at any one state

Strategy: design special Markov Chain so q_*[v] = w(v)/W

Start v_0 in V (q = [0 0 0 ... 1 ... 0 0]^T)

choose neighbor u (proportional to K(v,u))
 if (w(u) >= w(v_i)) --> v_{i+1} = u
 else w.p. w(u)/w(v) --> v_{i+1} = u
 else --> v_{i+1} = v_i

if ergodic:
there exists some t s.t. for i >= t
 Pr[v_i = v] = w(v)/W

NOTE: not in limit, but for some finite t (even for continuous) V
 through AMAZING "coupling from past"
But t is hard to find.

Often goal is to create many samples:
 formal: run for t+ steps, take sample, ...
 run for another t+ steps, take sample, ... repeat

 in practice: run for 1000 steps (burn in),
 take next 5000 steps as random samples

has "auto-correlation" but eventually more time efficient than tN steps for N
samples
 and t unknown.

"inherently sequential" makes very hard to parallelize

Applies even if V is continuous

