
2 Statistical Principles

We will study two phenomenon of random processes that describe are quite important, but possibly unintu-
itive. The goal will be to explore, formalize, and hopefully make intuitive these phenomenon.

• Birthday Paradox: To measure the expected collision of random events.

A random group of 23 people has about a 50% chance of having two with the same birthday.

• Coupon Collectors: To measure the expectation for seeing all possible outcomes of a discrete
random variable.

Consider a lottery where on each trial you receive one of n possible coupons at random. It takes in
expectation about n(0.577 + lnn) trials to collect them all.

From another perspective, these describe the effects of random variation. The first describes collision
events and the second covering events. Next lecture we will explore how long it takes for these events to
evenly distribute.

Model. For all settings, there is a common model of random elements drawn from a discrete universe. The
universe has n possible objects; we represent this as [n] and let i ∈ [n] represent one element (indexed by
i) in this universe. The n objects may be IP addresses, days of the year, words in a dictionary, but we can
always have each element (IP address, day, word) map to a distinct integer i where 0 < i ≤ n. Then we
study the properties of drawing k items uniformly at random from [n] with replacement.

2.1 Birthday Paradox
First, let us consider the famous situation of birthdays. Lets make formal the setting. Consider a room of k
people, chosen at random from the population, and assume each person is equally likely to have any birthday
(excluding February 29th), so there are n = 365 possible birthdays.

The probability that any two (i.e. k = 2) people (ALICE and BOB) have the same birthday is 1/n =
1/365 ≈ 0.003. The birthday of ALICE could be anything, but once it is known by ALICE, then BOB has
probability 1/365 of matching it.

To measure that at least one pair of people have the same birthday, it is easier to measure the probability
that no pair is the same. For k = 2 the answer is 1− 1/n and for n = 365 that is about 0.997.

For a general number k (say k = 23) there are
(
k
2

)
= k · (k−1)/2 (read as k choose 2) pairs. For k = 23,

then
(
23
2

)
= 253. Note that

(
k
2

)
= Θ(k2).

We need for each of these events that the birthdays do not match. Assuming independence we have

(1− 1/n)(
k
2) or 0.997253 = 0.467.

And the probability there is a match is thus 1 minus this number

1− (1− 1/n)(
k
2) or 1− 0.997253 = 0.532,

just over 50%.
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What are the problems with this?

• First, the birthdays may not be independently distributed. More people are born in spring. There may
be non-negligible occurrence of twins.

Sometimes this is really a problem, but often it is negligible. Other times this analysis will describe
an algorithm we create, and we can control independence.

• Second, what happens when k = n+1, then we should always have some pair with the same birthday.
But for k = 366 and n = 365 then

1− (1− 1/n)(
k
2) = 1− (364/365)(

366
2 ) = 1− (0.997)66795 = 1− 7× 10−88 < 1.

Yes, it is very small, but it is less than 1, and hence must be wrong.

Really, the probability should be

1−
(
n− 1

n

)
·
(
n− 2

n

)
·
(
n− 3

n

)
· . . . = 1−

k−1∏
i=1

(
n− i
n

)
.

Inductively, in the first round (the second person (i = 2) there is a (n − 1)/n chance of having no
collision. If this is true, we can go to the next round, where there are then two distinct items seen, and
so the third person has (n − 2)/n chance of having a distinct birthday. In general, inductively, after
the ith round, there is an (n− i)/n chance of no collision (if there were no collisions already), since
there are i distinct events already witnessed.

As a simple sanity check, in the (n+ 1)th term (n−n)/(n) = 0/n = 0; thus the probability of some
collision of birthdays is 1− 0 = 1.

Take away message.

• There are collisions in random data!

• More precisely, if you have n equi-probability random events, then expect after about k =
√

2n events
to get a collision. Note

√
2 · 365 ≈ 27, a bit more than 23.

Note that (1 + α
t )t ≈ eα for large enough t. So setting k =

√
2n then

1− (1− 1/n)(
k
2) ≈ 1− (1− 1/n)n ≈ 1− e−1 ≈ .63

This is not exactly 1/2, and we used a bunch of ≈ tricks, but it shows roughly what happens.

• This is pretty accurate. Note for n = 365 and k = 18 then

1− (1− 1/n)(
k
2) = 1− (364/365)153 ≈ .34

and when k = 28 then
1− (1− 1/n)(

k
2) = 1− (364/365)378 ≈ .64.

This means that if you keep adding (random) people to the room, the first matching of birthdays
happens 30% (= 64% − 34%) of the time between the 18th and 28th person. When k = 50 people
are in the room, then

1− (1− 1/n)(
k
2) = 1− (364/365)1225 ≈ .965,

and so only about 3.5% percent of the time are there no pair with the same birthday.
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2.2 Coupon Collectors
Lets now formalize the famous coupon lottery. There are n types of coupons, and we participate in a series
of independent trials, and on each trial we have equal probability (1/n) of getting each coupon. We want to
collect all toys available in a McDonald’s Happy Meal. How many trials (k) should we expect to partake in
before we collect all coupons?

Let ri be the expected number of trials we need to take before receiving exactly i distinct coupons. Let
r0 = 0, and set ti = ri − ri−1 to measure the expected number of trials between getting i − 1 distinct
coupons and i distinct coupons.

Clearly, r1 = t1 = 1, and it has no variance. Our first trials always yields a new coupon.
Then the expected number of trials to get all coupons is T =

∑n
i=1 ti.

To measure ti we will define pi as the probability that we get a new coupon after already having i − 1
distinct coupons. Thus ti = 1/pi. And pi = (n− i+ 1)/n.

We are now ready for some algebra:

T =
n∑
i=1

ti =
n∑
i=1

n

n− i+ 1
= n

n∑
i=1

1

i
.

Now we just need to bound the quantity
∑n

i=1(1/i). This is known at the nth Harmonic Number Hn. It
is known that Hn = γ + lnn+ o(1/n) where ln(·) is the natural log (that is ln e = 1) and γ ≈ 0.577 is the
Euler-Masheroni constant. Thus we need, in expectation,

k = T = nHn = n(γ + lnn)

trials to obtain all distinct coupons.

Extensions.

• What if some coupons are more likely than others. McDonalds offers three toys: Alvin, Simon, and
Theodore, and for every 10 toys, there are 6 Alvins, 3 Simons, and 1 Theodore. How many trials do
we expect before we collect them all?

In this case, there are n = 3 probabilities {p1 = 6/10, p2 = 3/10, p3 = 1/10} so that
∑n

i=1 pi = 1.

The analysis and tight bounds here is a bit more complicated, but the key insight is that it is dominated
by the smallest probability event. Let p∗ = mini pi. Then we need about

k ≈
(

1

p∗

)
(γ + lnn)

random trials to obtain all coupons.

• These properties can be generalized to a family of events from a continuous domain. Here there can
be events with arbitrarily small probability of occurring, and so the number of trials we need to get
all events becomes arbitrarily large (following the above non-uniform analysis). So typically we set
some probability ε ∈ [0, 1]. (Typically we consider ε as something like {0.01, .001} so 1/ε something
like {100, 1000}. Now we want to consider any set of events with combined probability greater than
ε. (We can’t consider all such subsets, but we can restrict to all, say, contiguous sets – intervals if the
events have a natural ordering). Then we need

k ≈ 1

ε
log

1

ε

random trials to have at least one random trial in any subset with probability at least ε. Such a set is
called an ε-net.
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Take away message.

• It takes about n lnn trials to get all items at random from a set of size n, not n. That is we need an
extra about lnn factor to guarantee we hit all events.

• When probability are not equal, then it is the smallest probability item that dominates everything!

• To hit all (nicely shaped) regions of size εn we need about (1/ε) log(1/ε) samples, even if they can
be covered by 1/ε items.
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