
L10 -- k-means clustering
[Jeff Phillips - Utah - Data Mining]

-------------------------------------------------
k-means clustering:  
  Find k points C = {c_1, ..., c_k}, s.t. 
   - each p in P assigned mu(p) = arg min_{c in C} ||p - c||
   - minimize E(P,C,mu) = sum_{p in P} ||p, mu(p)||^2

(like k-center  minimize max_{p in P} ||p - mu(p)||  )
(     k-median  minimize sum_{p in P} ||p - mu(p)||  )

Lloyd's algorithm (1957 -> published 1982)
-----------
Choose k points (arbitrarily?) C subset P
   1. for all p in P, find mu(p)  (closest center c in C to p)
   2. for all i in [k]   let c_i = average{p in P | mu(p) = c_i}
 if (C changed, repeat)
----------

say R rounds ==> O(R kn)
   (improved w/  faster NN search)

What is R?
  finite.  # of distinct clusters
    each step minimizes E(P,C,mu)
  with fixed k, d  ->  R = O(n^{dk})   (Voronoi diagram)
  --> exponential in k,d (NP-Hard)
  R ~ 10, usually ok.  

  smooth complexity:  (perturb data randomly, ->  O(n^{35} k^{34} d^8)  :) big 
but poly )
  on a lattice:  O(d n^4 M^2)

-------------------------------------------------
How to choose initial centers C?  

 - random set of k points
     we know that collisions are likely (if k true clusters)
 - randomly partition data P -> {S_1, ... S_k}, take mean of each
 - MinMax
     (sensitive to outliers)
 
-----------
Choose first c_1 arbitrarily



  C_1 = {c_1}    (generally C_i = {C_1, C_2, ..., C_i}  \\ goal C_k)

Let c_{i+1} = arg max_{p in P \ C_i} d(p,mu(p))
   "always pick point furtherest from set of centers C_i"
----------

 - k-means++  (guarantees polynomial time, with some probability)

-----------
Choose first c_1 arbitrarily
  C_1 = {c_1}    (generally C_i = {C_1, C_2, ..., C_i}  \\ goal C_k)

Choose c_{i+1} with_prob_{p in P \ C_i} ||p - mu(p)||^2
   "pick point proportional to distance from set of centers C_i"
----------

 - random re-starts  (try multiple times, take the best)

-------------------------------------------------
How accurate is Lloyd's Algo?  
 - can be arbitrarily bad
 - (1+eps)-approx in 2^{(k/eps)^{O(1)}} nd  [Kumar,Sabharwal,Sen '04]
 
k-means++ is O(log k) competitive (8 if well-separated)

-------------------------------------------------

Problems with k-means:
 - Lloyd's Algo requires d(a,b) = ||a-b||
   -> can use C subset P  (slower to run step 2)

 - effected by outliers.  squared distance makes far points more important
   (k-medians: step 1 same, step 2 harder "Fermat-Weber problem", gradient 
descent)

 - enforces equi-sized clusters.  Vornonoi partition.
    (draw mickey-mouse picture)

 - EM formulation:  Expectation-Maximization
   model each cluster as a Gaussian G_i (centered at c_i)
     1. for each point, find cluster with largest probability of containing 
that point
     2. for a cluster, find best fit Gaussian (c_i = mean, covariance = 
estimate each variance)



   (allows for slanted (with PCA) and non-uniform clusters)

 - has also been work in clustering to low-dimensional subspaces.  
   Enforces that some covariances are 0, others "infinite" (at least uniform).  

---------------------------------------------------

Speeding up k-means:  
 - run k-means on random sample of points.  
   Once centers obtained, run on full set.

 - run streaming with (k log k) clusters
   merge clusters at end
   (better: maintain hierarchy of clusters)

 - BFR algorithm:  Process points in batches
   - summarize batches (compact clusters as Gaussians + leftovers)
   - merge summaries


