
Asmt 5: Regression
Turn in a hard copy at the start of class:

Wednesday, April 10
20 points

Overview
In this assignment you will explore regression techniques on high-dimensional data.

You will use a few data sets for this assignment:

• http://www.cs.utah.edu/˜jeffp/teaching/cs5955/A5/M.dat
• http://www.cs.utah.edu/˜jeffp/teaching/cs5955/A5/X.dat
• http://www.cs.utah.edu/˜jeffp/teaching/cs5955/A5/Y.dat
• http://www.cs.utah.edu/˜jeffp/teaching/cs5955/A5/A.dat
• http://www.cs.utah.edu/˜jeffp/teaching/cs5955/A5/B.dat

This data sets are in matrix format and can be loaded into MATLAB or OCTAVE. By calling
load filename (for instance load M.dat)
it will put in memory the data in the file, for instance in the above example the matrix M. You can then
display this matrix by typing
M

As usual, it is highly recommended that you use LaTeX for this assignment. If you do not, you may
lose points if your assignment is difficult to read or hard to follow. Find a sample form in this directory:
http://www.cs.utah.edu/˜jeffp/teaching/latex/

1 Singular Value Decomposition (5 points)
First we will compute the SVD of the matrix M we have loaded
[U,S,V] = svd(M)

Then take the top k columns components of M for values of k = 1 through k = 10 using
Uk = U(:,1:k)
Sk = S(1:k,1:k)
Vk = V(:,1:k)
Mk = Uk*Sk*Vk’

Compute and report the L2 norm of the difference between M and Mk for each value of k using
norm(M-Mk,2)

Find the smallest value k so that the L2 norm of M-Mk is less than 10% that of M; k might or might not
be larger than 10.

2 Column Sampling (8 points)
Select t (for t from 1 to 30) columns {c1,c2, . . . ,ct} using the two types of column sampling from the
matrix data set M.

Type 1: For each column j M(:,j) calculate the squared norm sj = norm(M(:,j))ˆ2, and select t
columns proportional to the values sj.
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Type 2: Calculate the SVD of M : [U, S, V] = svd(M). For each column j calculate the squared norm
projected onto the column space of the top k-singular vectors: wj = norm(Uk*Uk’*M(:,j))ˆ2,
and select t columns proportional to the values wj. (Use k = 5.)

We now need to measure how accurate a subspace these columns represent. Construct a matrix with the
sampled columns C = [c1 c2 c3 ... ct]. Then create a projection matrix onto the column space
of C as J = C*inverse(C’*C)*C’. Finally calculate the L2 norm of the difference between M and
M projected onto the column space of C as norm(M - J*M,2).

If the inverse returns NaN, then try pinv.

A (4 points): Report this error for each choice of t. Since this is a randomized algorithm, the values
may vary. You should repeat this experiment several times to get good representative values. Also the nice
plotting functions of MATLAB/OCTAVE may be useful as a replacement for presenting this data instead of
reporting a series of numbers.

B (2 points): For both types of column sampling, estimate how large t need to be to reach the same error
as the SVD approach with k = 5.

C (2 points): Using the values of t found in part B, for both types of column sampling, estimate the
number of non-zero entries in these t columns sampled. Compare this value to the number of non-zero
entries in V5 constructed using the SVD.

3 Linear Regression (7 points)
We will find coefficients A to estimate X*A = Y. We will compare two approaches least squares and ridge
regression.

Least Squares: Set A = inverse(X’ * X)*X’*Y

Ridge Regression: Set As = inverse(X’*X + s*eye(6))*X’*Y

A (3 points): Solve for the coefficients A (or As) using Least Squares and Ridge Regression with s =
{0.1, 0.3, 0.5, 1.0, 2.0}. For each set of coefficients, report the error in the estimate Ŷ of Y as norm(Y -
X*A,2).

B (4 points): Create three row- subsets of X and Y

• X1 = X(1:8,:) and Y1 = Y(1:8)

• X2 = X(3:10,:) and Y2 = Y(3:10)

• X3 = [X(1:4,:); X(7:10,:)] and Y3 = [Y(1:4); Y(7:10)]

Repeat the above procedure on these subsets and cross-validate the solution on the remainder of X and
Y. Specifically, learn the coefficients A using, say, X1 and Y1 and then measure norm(Y(9:10) -
X(9:10,:)*A,2).

Which approach works best (averaging the results from the three subsets): Least Squares, or for which
value of s using Ridge Regression?

CS 6955 Data Mining; Spring 2013 Instructor: Jeff M. Phillips, University of Utah



4 BONUS (5 points)
Consider a linear equation B = ASwhere A is a measurement matrix filled with random values {−1, 0,+1}
(although now that they are there, they are no longer random), and B is the output of the sparse signal S
when measured by A.

Use Orthogonal Matching Pursuit (as described in the notes) to recover the non-zero entries from S.
Record the order in which you find each entry and the residual vector after each step.
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