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Markov Chain : Life Lessons

I [L1] Only your current position matters going forward, don’t

worry about the past.

I [L2] You just need to worry about one step at a time; you will

get there eventually (or you won’t).

I [L3] In the limit, everyone has perfect karma.



Markov Chain : Life Lessons

I [L1] Only your current position matters going forward, don’t

worry about the past.

I [L2] You just need to worry about one step at a time; you will

get there eventually (or you won’t).

I [L3] In the limit, everyone has perfect karma.



Markov Chain : Life Lessons

I [L1] Only your current position matters going forward, don’t

worry about the past.

I [L2] You just need to worry about one step at a time; you will

get there eventually (or you won’t).

I [L3] In the limit, everyone has perfect karma.



Markov Chain : Life Lessons

I [L1] Only your current position matters going forward, don’t

worry about the past.

I [L2] You just need to worry about one step at a time; you will

get there eventually (or you won’t).

I [L3] In the limit, everyone has perfect karma.



Graphs
a

b

c

d

e

f

g

h

Mathematically: G = (V ,E ) where

V = {a, b, c , d , e, f , g} and

E =
n
{a, b}, {a, c}, {a, d}, {b, d}, {c , d}, {c , e}, {e, f }, {e, g}, {f , g}, {f , h}

o
.

Matrix-Style: As a matrix with 1 if there is an edge, and 0 otherwise.
(For a directed graph, it may not be symmetric).

G =

a b c d e f g h

a 0 1 1 1 0 0 0 0
b 1 0 0 1 0 0 0 0
c 1 0 0 1 1 0 0 0
d 1 1 1 0 0 0 0 0
e 0 0 1 0 0 1 1 0
f 0 0 0 0 1 0 1 1
g 0 0 0 0 1 1 0 0
h 0 0 0 0 0 1 0 0
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0 1 1 1 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0
1 1 1 0 0 0 0 0
0 0 1 0 0 1 1 0
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0
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Markov Chain
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(V ,P , q): V node set, P probability transition matrix, q initial state.

e.g. qT = [0 1 0 0 0 0 0 0] or qT = [0.1 0 0 0.3 0 0.6 0 0].

P =

0
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0 1/2 1/3 1/3 0 0 0 0
1/3 0 0 1/3 0 0 0 0
1/3 0 0 1/3 1/3 0 0 0
1/3 1/2 1/3 0 0 0 0 0
0 0 1/3 0 0 1/3 1/2 0
0 0 0 0 1/3 0 1/2 1
0 0 0 0 1/3 1/3 0 0
0 0 0 0 0 1/3 0 0
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Transitions

P =

0

BBBBBBBBB@

0 1/2 1/3 1/3 0 0 0 0
1/3 0 0 1/3 0 0 0 0
1/3 0 0 1/3 1/3 0 0 0
1/3 1/2 1/3 0 0 0 0 0
0 0 1/3 0 0 1/3 1/2 0
0 0 0 0 1/3 0 1/2 1
0 0 0 0 1/3 1/3 0 0
0 0 0 0 0 1/3 0 0
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and qT = [0 1 0 0 0 0 0 0]

q1 = Pq =
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2
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q2 = Pq1 = PPq = P
2
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q3 = Pq2 =
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0 0 0
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.

In the limit: qn = P
n
q

[L1] Only your current position matters going forward,

don’t worry about the past.
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① Cyclic
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Cyclic Examples
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Absorbing and Transient Examples
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Unconnected Examples
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Limiting State

Let P⇤ = P
n as n ! 1.

Let q⇤ = P
⇤
q.

[L2] You just need to worry about one step at a time;

you will get there eventually (or you won’t).

if MC is ergodic

O in
1 step P
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pushes
the state to the

⇐ ⇒

final state
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vector
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has weight

for each node
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Cj ) fth node
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Delicate Balance

Let P⇤ = P
n as n ! 1.

Let q⇤ = P
⇤
q.

Also q⇤ = PP
⇤
q thus q⇤ = Pq⇤.

So the probability of (being in a state i and leaving to j) is the
same as (being in another state j and arriving in i)

Pi ,jq⇤(i) = Pj ,iq⇤(j)

[L3] In the limit, everyone has perfect karma.
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In our example

q⇤ = (0.15, 0.1, 0.15, 0.15, 0.15, 0.15, 0.1, 0.05)
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Metropolis Algorithm

Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller in 1953

Metropolis on V and w

Initialize v0 = [0 0 0 . . . 1 . . . 0 0]T .
repeat
Generate u ⇠ K (v , ·)
if (w(u) � w(vi )) then

Set vi+1 = u

else
With probability w(u)/w(v) set vi+1 = u

else
Set vi+1 = vi

until “converged”
return V = {v1, v2, . . . , }

energy state q

Els )

Probability particle  in q

proportional to

who ) . e

- Eto )



Metropolis Algorithm

Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller in 1953

Metropolis on V and w

Initialize v0 = [0 0 0 . . . 1 . . . 0 0]T .
repeat
Generate u ⇠ K (v , ·)
if (w(u) � w(vi )) then
Set vi+1 = u

else
With probability w(u)/w(v) set vi+1 = u

else
Set vi+1 = vi

until “converged”
return V = {v1, v2, . . . , }

Markov Chaitin

( V
,

P
,

g)c- Rd ✓ = IRD

It e - aYik7 .  
 .snog

← A
- -

⇐ "

-=


