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Important: ‘ATPU\L' 55
Pr (observation | hypothesis) # Pr (hypothesis | observation) \~\ o

The probability of observing a result given that some hypothesis
is true is not equivalent to the probability that a hypothesis is true

given that some result has been observed. \ k
= es n\nk-(
Using the p-value as a “score” is committing an egregious logical error:

the transposed conditional fallacy. ‘f\ KL.- .
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A p-value (shaded green area) is the probability of an observed
(or more extreme) result assuming that the null hypothesis is true.
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Why Most Published Research Findings
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1. Simple classical test based on a unique test statistic, T, which
when applied to the observed data yields T(y).

2. Classical test pre-chosen from a set of possible tests: thus,
T(y; ¢), with preregistered ¢. For example, ¢ might
correspond to choices of control variables in a regression,
transformations, and data coding and excluding rules, as well
as the decision of which main effect or interaction to focus on.

3. Researcher degrees of freedom without fishing: computing a
single test based on the data, but in an environment where a
different test would have been performed given different data;
thus T(y; ¢(y)), where the function ¢(-) is observed in the
observed case.

4. “Fishing": computing T(y;¢;) for j =1,...,J: that is,
performing J tests and then reporting the best result given
the data, thus T(y; ¢**t(y)).



