$$
\begin{aligned}
& J S(A, B)=\operatorname{Pr}\left[v_{i}(A)=v_{i}(B)\right] \\
& J S(A, B)=E\left[\frac{1}{2} \sum_{i=1}^{n} \mathbb{1}\left(v_{c}(A)=v_{i}(B)\right)\right]
\end{aligned}
$$

L5: Locality Sensitive Hashing

Jeff M. Phillips

$$
\begin{aligned}
& \text { January 23, } 2019 \\
& \text { Raw Data Abstrot Sed } \\
& \text { text } \xrightarrow[R \text { regroms }]{\bigcup_{\text {vector }(m)^{2}} \text { mirheshing }} \\
& \begin{array}{c}
\text { yector } \\
\left(v_{1}, 1,2, \ldots v_{1}\right) \\
\left.v_{n}\right)^{12}
\end{array}
\end{aligned}
$$

$n=1$ million documents $D_{1}, D_{2} \ldots D_{n}$ tz-grams: sals $A_{1}, X_{2} \ldots A_{n}$ minhash $\quad v_{1}, v_{2}, \ldots v_{n}$
$\frac{\text { QI: which paiss o objects ase similar? }}{J S\left(A_{i}, A_{j}\right)>T \quad(\text { es: }=0.85)}$ n^{2} distance caleulations
Q2: Given a quary $D_{q} \rightarrow A_{q} \rightarrow v_{q}$,
which objects ase similas?
n distance colcolations.

Have n numbers $S=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\} \subset \mathbb{R}$ Store S in a datu stracture so given query $\& \in \mathbb{R}$ retusn $\underset{s_{i} \in S}{\operatorname{argmin}}|q-s|$

- Sosor in list.
- Boild binarg dree

Q2: $O(\log n)$ fime

Sensituve tlashing

$$
\left.h \epsilon_{i i d}\right)(
$$

$d_{a \times g}(a, b)$
$=\arccos (b, b))$ $\operatorname{Pr}[h(a)=h(b)] \approx S(a, b)$
$=\arccos (2, b))$
Saccard

$$
\operatorname{Pr}[h(A)=h(B)]=J S(A, B)
$$

Angular Sim Pr $[h(A)=b(B)]=\operatorname{Sang}(A, B)$

$$
\begin{array}{r}
a, b \in \mathbb{S}^{d-1}=\left\{a, b \in \mathbb{R}^{d} \mid\|a\|=1,\|b\|=1\right\} \\
\bar{a} \leftarrow \frac{v \in \mathbb{R}^{d}}{n v u} \quad S_{\text {ang }}(a, b)=1-\frac{1}{\pi} \frac{a f(\cos (\langle a, b\rangle)}{} \begin{array}{l}
\text { Euclidean sim } \\
\left.P_{5}[h(A)=h(B)] \approx<A, B\right)
\end{array}
\end{array}
$$

LSH $b=3$ and $r=5$
Probability of found collision $=1-\left(1-s^{b}\right)^{r}$

-																	
									-								
		,			0,3			${ }_{0}$									

Banding b tablas in band r bands (meta Hash for)
$s=S(A, B) \leftarrow \operatorname{Pr}(h(a)=h(b)) \quad h \in) \in$
$s^{b}=$ prob all hash Son in one band collide
$\left(1-s^{b}\right)=$ prob not all hash "
$\left(1-5^{b}\right)^{r}=$ probability that in no band, do all hast
$f(s)=1-\left(1-5^{5}\right)^{r}=$ prods of at least one bard finds collision.

$\mathrm{LSH} b=3$ and $r=15$

Probability of found collision $=1-\left(1-s^{b}\right)^{r}$
$\mathrm{LSH} b=3$ and $r=15$

Probability of found collision $=1-\left(1-s^{b}\right)^{r}$

$\mathrm{LSH} b=6$ and $r=15$

Probability of found collision $=1-\left(1-s^{b}\right)^{r}$

$\mathrm{LSH} b=6$ and $r=15$

Probability of found collision $=1-\left(1-s^{b}\right)^{r}$

$\mathrm{LSH} b=10$ and $r=15$

Probability of found collision $=1-\left(1-s^{b}\right)^{r}$

LSH $b=10$ and $r=15$

Probability of found collision $=1-\left(1-s^{b}\right)^{r}$

$\mathrm{LSH} b=8$ and $r=100$

Probability of found collision $=1-\left(1-s^{b}\right)^{r}$

LSH $b=8$ and $r=100$
 $$
t=r \cdot h=100 \cdot 8=800
$$

Probability of found collision $=1-\left(1-s^{b}\right)^{r}$

$\operatorname{LSH}(b=3, r=5) \&(b=6, r=15) \&(b=8, r=100)$
Probability of found collision $=1-\left(1-s^{b}\right)^{r}$

$$
\operatorname{LSH}(b=3, r=5) \&(b=6, r=15) \&(b=8, r=100)
$$

$$
\begin{aligned}
& S_{\text {ang }} ; S^{d-1} \times S^{d-1} \rightarrow[0, D \\
& S_{\text {ang }}(a, b\rangle=1-\frac{1}{\pi} \arccos (\langle a, b\rangle) \\
& h_{0} \in \epsilon_{\text {ang }} \\
& 0 \sim b_{n i}\left(S^{d-1}\right) \\
& h_{0}: S^{d-1} \rightarrow\{-1,+1\} \\
& h_{0}(a)=\operatorname{sign}(\langle u, a\rangle) \\
& h_{0}(a)=+1 \quad h_{0}(b)=+1 \\
& h_{u^{\prime}}(a)=-1 \quad h_{0}(b)=+1
\end{aligned}
$$

$$
u \sim v_{\text {nif }}\left(\Phi^{d-1}\right)
$$

Guess

$$
\begin{aligned}
& P \sim\left(U_{\text {nif }}[-1,1]\right)^{d} \\
& u=\frac{P}{n=11}
\end{aligned}
$$

$\mathbb{R}^{d} \quad d=2$ i rejectoon sompline

$$
\begin{aligned}
& p \sim u_{n i f}[-1,1]^{2} \\
& \text { if }\|p\|>1 \rightarrow \text { startouec } \\
& \text { o.w } v-\frac{T}{n P \|}
\end{aligned}
$$

$$
u \sim u_{\text {nif }}\left(\Phi^{d-i}\right)
$$

$$
\text { 1. } g \sim G_{d}(x)=\frac{1}{(2 \pi)^{d / 2}} e^{-\|x\|^{2} / 2}
$$

2. $v=\frac{g}{\|g\|}$

$$
g=\left(g_{1}, g_{2}, \ldots g_{0}\right)
$$

Box-Mueller Tomstorm

$$
\xi_{i} \pi G(x)=\frac{1}{\sqrt{2 \pi}} e^{-\|x\|^{2} / 2}
$$

