L18: Lasso + Regularized Regression

Jeff M. Phillips

March 14, 2018

(Lesso) -> arsmin || Xx-y/12 + S||x||, equivalent to aresmin || X x - yllz soch that || x11, 5 t as s increuse t decreases

· Who regularization t high slope is unstehe 1 housing dowards mean

lapet X, y v. e X x. e (x. x., ...x2) y=(g, y, ... y) y, ETR (cx x0 = 1 $f_{inel} \quad f_{\infty}(x) \rightarrow \mathbb{R}$ $f_{\infty}(x) = \xi_{i} \times_{i} \times_{i} \times_{i} \times_{i} \times_{i} = \xi_{i} \times_{i} \times_{i} \times_{i} \times_{i} = \xi_{i} \times_{i} \times_{i} \times_{i} \times_{i} \times_{i} \times_{i} = \xi_{i} \times_{i} \times_$ do + xx, + x2x2+... regularization x = arsmin | | x x - y | z 48/1X/1023 1 -norm (lasse) Ridge Ren $x^* = (x^T x)^T x^T y \quad x_y^* = (x^T x + x^2 x)^T x^4 y$

Orthogonal Matching Pursuit (OMP)

Find $\alpha^* = \arg\min_{\alpha \in \mathbb{R}^d} \|X\alpha - y\|_2 + s\|\alpha\|_1$ Forward Subset Selection:

Orthogonal Matching Pursuit

```
Set r=y. for i=1 to t do  \text{Set } X_j = \arg\max_{X_{j'} \in X} |\langle r, X_{j'} \rangle|. \\ \text{Set } \alpha_j = \arg\min_{\alpha} \|r - X_j \alpha\| + s |\alpha|. \\ \text{Set } r = r - X_j \alpha_j. \\ \text{Return } \hat{S} \text{ where } \hat{s}_j = \gamma_j \text{ (or 0)}.
```


Lasso Illustration

Find $\alpha^* = \arg\min_{\alpha \in \mathbb{R}^d} \|X\alpha - y\|_2 + s\|\alpha\|_1$

D-Va 015 Null Hypothesis Ho Distribution.

Ho

area under Ha dist

is p-value often if p-value < 0.05

hypothesis = &

Important:

Pr (observation | hypothesis ≠ Pr (hypothesis | observation)

The probability of observing a result given that some hypothesis is true is not equivalent to the probability that a hypothesis is true given that some result has been observed.

Using the p-value as a "score" is committing an egregious logical error: the transposed conditional fallacy.

A **p-value** (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

https://xkcd.com/882/

WE. FOUND NO LINK BETWEEN PURPLE JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN BROWN JELLY BEANS AND ACNE (P > 0.05)

WE. FOUND NO LINK BETWEEN PINK JELLY BEANS AND ACNE (P > 0.05)

WE. FOUND NO LINK BETWEEN BLUE JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN TEAL JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN SALMON JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN RED JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN TURQUOISE JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN MAGENTA JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN YELLOW JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN GREY JEILY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN TAN JEILY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN CYAN JELLY BEANS AND ACNE (P > 0.05)

WE FOUND A LINK BETWEEN GREEN JELLY BEANS AND ACNE (P<0.05)

LINK BETWEEN MAUVE JELLY (P>0.05)

WE FOUND NO BEANS AND ACNE

WE FOUND NO I INK BETWEEN BEIGE JEILY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN LILAC JEILY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN BLACK JEILY BEANS AND ACNE (P > 0.05).

WE FOUND NO I INK BETWEEN PEACH JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN ORANGE JELLY BEANS AND ACNE (P>0.05)

green jelly benns. P = 0.05

https://xkcd.com/882/

WE FOUND NO LINK BETWEEN PURPLE JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN BROWN JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN PINK JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN BLUE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN TEAL JELLY BEANS AND ACNE (P > 0.05),

WE FOUND NO LINK BETWEEN SALMON JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN RED JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN TURQUOISE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN MAGENTA JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN YELLOW JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN GREY JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN TAN JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN CYAN JELLY BEANS AND ACNE (P > 0.05),

WE FOUND A LINK BETWEEN GREEN JELLY BEANS AND ACNE (P<0.05).

WE FOUND NO LINK BETWEEN MAUVE JELLY BEANS AND ACNE (P>0.05),

WE FOUND NO LINK BETWEEN BEIGE JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN LILAC JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN BLACK JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN PEACH JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN ORANGE JELLY BEANS AND ACNE (P > 0.05).

 $\frac{1}{70} = 0.05$

Essay

Why Most Published Research Findings Are False

John P.A. Ioannidis PLOS 2:8, 2005

Summary

There is increasing concern that most current published research findings are false. The probability that a research claim is true may depend on study power and bias, the number of other studies on the

factors that influence this problem and some corollaries thereof.

Modeling the Framework for False Positive Findings

Several methodologists have pointed out to

is characteristic of the field and can vary a lot depending on whether the field targets highly likely relationships or searches for only one or a few true relationships

Essay

Why Most Published Research Findings Are False

John P.A. Ioannidis PLOS 2:8, 2005

Summary

There is increasing concern that most current published research findings are false. The probability that a research claim is true may depend on study power and bias, the number of other studies on the

factors that influence this problem and some corollaries thereof.

Modeling the Framework for False Positive Findings

Several methodologists have pointed out to

is characteristic of the field and can vary a lot depending on whether the field targets highly likely relationships or searches for only one or a few true relationships

Bonferroni Correction?

20 hypolhesies 20 hypolhesies

Essay

Why Most Published Research Findings Are False

John P.A. Ioannidis PLOS 2:8, 2005

Summary

There is increasing concern that most current published research findings are false. The probability that a research claim is true may depend on study power and bias, the number of other studies on the

factors that influence this problem and some corollaries thereof.

Modeling the Framework for False Positive Findings

Several methodologists have pointed out to

is characteristic of the field and can vary a lot depending on whether the field targets highly likely relationships or searches for only one or a few true relationships

Bonferroni Correction?

Gelman + Lokin 2013 1) Exactly (Recomplete Ho (Fisher) (812) @ Prestate / Re-register hypothesis parameter 5 Ho 2012 3) Fix test whend of firms. Hos BAI)
Use date to set 14) T-hacking -> Gender Parameter space for low g-value. BAD