
9 Assignment-based Clustering

Probably the most famous clustering formulation is k-means. This is the focus today. Note: k-means is
not an algorithm, it is a problem formulation. We will also discuss other variants, noteably the k-center
clustering algorithm.
k-Means is in the family of assignment-based clustering. Each cluster is represented by a single point,

to which all other points in the cluster are “assigned.” Consider a set X , and distance d : X × X → R+,
and the output is a set C = {c1, c2, . . . , ck}. This implicitly defines a set of clusters where φC(x) =
argminc∈C d(x, c). Then the k-means clustering problem is to find the set C of k clusters (often, but not
always as a subset of X) to

minimize
∑
x∈X

d(φC(x), x)
2.

So we want every point assigned to the closest center, and want to minimize the sum of the squared distance
of all such assignments.

Recall, there are other variants:

• the k-center clustering problem: minimize maxx∈X d(φC(x), x)

• the k-median clustering problem: minimize
∑

x∈X d(φC(x), x)
The k-mediod variant is similar, but restricts that the centers C must be a subset of P .

9.0.1 Gonzalez Algorithm for k-Center Clustering
Here we want every point assigned to the closest center, and want to minimize the longest distance of any
such assignment.

Unfortunately, the k-center clustering problem is NP-hard to solve exactly. In fact, it is NP-hard to find a
clustering within a factor 2 of the optimal cost!

Luckily, there is an algorithm that achieves this factor 2 approximation, it is quite fast, and it works very
well in practice. It is usually attributed to Gonzalez (1985), but it may likely be much older. The lesson is:

Be greedy, and avoid your neighbors!

Algorithm 9.0.1 Gonzalez Greedy Algorithm for k-Center Clustering
Choose c1 ∈ X arbitrarily. Let C1 = {c1}.
(In general let Ci = {c1, . . . , ci}.)
for i = 2 to k do

Set ci = argmaxx∈X d(x, φCi−1(x)).

As Algorithm 9.0.1 describes, the algorithm is to always pick the point in x that is furthest from the
current set of centers, and let it also be a center.

In the worst case, this is a 2-approximation to the optimal clustering for the k-center clustering problem.
But is often much better in practice.

It only takes time about k2n = O(k2n). There are k rounds, and each round can be done in about nk
time. We maintain the set φCi(x) for each x. When a new ci is found, and added to the set of centers, all n
assignments φCi(x) can be updated in linear O(n) time, by checking each distance d(x, φCi−1(x)) against
d(x, ci) and switching the assignment if the later is smaller. Then the minimum can be found in the next
round on a linear scan (or on the same linear scan).

1



Algorithm 9.0.2 Detailed Gonzalez Greedy Algorithm for k-Center Clustering
Choose c1 ∈ X arbitrarily, and set φ[j] = 1 for all j ∈ [n]
for i = 2 to k do
M = 0, ci = x1
for j = 1 to n do

if d(xj , cφ[j]) > M then
M = d(xj , cφ[j]), ci = xj

for j = 1 to n do
if d(xj , cφ[j]) > d(xj , ci) then
φ[j] = i

This works for any metric. However, it biases the choice of centers to be on the “edges” of the dataset.
There are heuristic to try to recenter afterwards, but usually not worth it—just use another algorithm instead.

9.1 Lloyd’s Algorithm
When people think of the k-means problem, they usually think of the following algorithm. It is usually
attributed to Lloyd from a document in 1957, although it was not published until 1982 [9].

Algorithm 9.1.1 Lloyd’s Algorithm for k-Means Clustering
Choose k points C ⊂ X [...arbitrarily?]
repeat

For all x ∈ X , find φC(x) (closest center c ∈ C to x)
For all i ∈ [k] let ci = average{x ∈ X | φC(x) = ci}

until The set C is unchanged

If the main loop has R rounds, then this take roughly Rnk steps (and can be made closer to Rn log k with
faster nearest neighbor search in some cases).

But what is R?

• It is finite. The cost (
∑

x∈X(d(x, φC(x))
2)) is always decreasing, and there are a finite (precisely,(

n
k

)
= O(nk)) number of possible distinct cluster centers. But it could be exponential in k and d (the

dimension when Euclidean distance used).

• However, usually R = 10 is fine.

• Smoothed analysis: if data perturbed randomly slightly, then R = O(n35k34d8) [2]. This is “polyno-
mial,” but still ridiculous.

• If all points are on a grid of length M , then R = O(dn4M2). But thats still way too big.

Lesson: there are crazy special cases that can take a long time, but usually it works. Recall:

When data is easily cluster-able, most clustering algorithms work quickly and well.
When is not easily cluster-able, then no algorithm will find good clusters.

Sometimes there is a good k-means clustering, but it is not found by Lloyd’s algorithm. Then we can
choose new centers again (with randomness), and try again.

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah



How do we initialize C? The goal is to get one point from each final cluster. Then it will converge quickly.

• Random set of k points. By coupon collectors, we know that we need about k log k to get one in each
cluster.

• Randomly partition X = {X1, X2, . . . , Xk} and take ci = average(Xi). This biases towards “cen-
ter” of the full set X (by Chernoff-Hoeffding).

• Gonzalez algorithm [6] (for k-center). This may bias too much to outlier points.

Algorithm by Arthur and Vassilvitskii [3] called k-means++.

Algorithm 9.1.2 k-Means++ Algorithm
Choose c1 ∈ X arbitrarily. Let C1 = {c1}.
(In general let Ci = {c1, . . . , ci}.)
for i = 2 to k do

Choose ci from X with probability proportional to d(x, φCi−1(x))
2.

As Algorithm 9.1.2 describes, the algorithm is like Gonzalez algorithm, but is not completely greedy.

How accurate is Lloyd’s algorithm for k-means? It can be arbitrarily bad.
Theory algorithm: Gets (1 + ε)-approximation for k-means in 2(k/ε)

O(1)
nd time [8].

But k-means++ is O(log n)-approximate (or 8-approximate if data is well-spaced) [3]. Can then be
refined with k-means, if desired.

9.2 Problems with k-Means
• The key step that makes Lloyd’s algorithm so cool is average{x ∈ X} = argminc∈Rd

∑
x∈X ‖c −

x‖2. But this only works with d(x, c) = ‖x− c‖2.

As an alternative, can enforce that C ⊂ X . Then choose each ci from {x ∈ X | φC(x) = ci} that
minimizes distance. But slower.

• Is effected by outliers more than k-median clustering. Can adapt Lloyd’s algorithm, but then step
two (recentering) is harder: Called “Fermet-Weber problem,”[10, 5] and can be approximated with
gradient descent.

• Enforces equal-sized clusters. Based on distance to cluster centers, not density.

One adaptation that perhaps has better modeling is the EM formulation: Expectation-Maximization.
It models each cluster as a Gaussian distribution Gi centered at ci.

– For each point x ∈ X , find cluster ci with largest probability of containing that point.
– For each cluster, find best fit Gaussian Gi with ci = average{x ∈ X | φC(x) = ci}, but

estimated variance from data.

This can also allow for non-uniform Gaussians, but first taking PCA of data in cluster, and then
estimating variance along each PCA axis. Can be made more robust with regularization.

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah



9.3 Speeding-Up k-Means
• First run Lloyds (or k-means++) on random sample of points (of size n′ � n). Then given good

estimate of centers, run on full set (will hopefully be close to converged).

• Run a one-pass algorithm (streaming, covered later) getting O(k log k) clusters. Reduce to k clusters
at end, but merging extra clusters [1].

Can use another streaming trick where there are a hierarchy of clusters of recent subsets representing
geometrically increasing size [7].

• A recent algorithm combines these ideas to make k-means++ somewhat scalable with some added
approximation error [4].

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah



Bibliography

[1] Nir Ailon, Ragesh Jaiswal, and Claire Monteleoni. Streaming k-means approximation. In Advances
in Neural Information Processing Systems, 2009.

[2] David Arthur, Bodo Manthey, and Heiko Röglin. Smoothed analysis of the k-means method. Journal
of ACM, 58(5):19, 2011.

[3] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In Proceedings
of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027–1035, Philadel-
phia, PA, USA, 2007. Society for Industrial and Applied Mathematics.

[4] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei Vassilvitskii. Scalable
k-means++. VLDB Journal, 2012.

[5] Prosenjit Bose, Anil Maheshwari, and Pat Morin. Fast approximations for sums of distances, clustering
and the fermat–weber problem. Comput. Geom. Theory Appl., 24(3):135–146, 2003.

[6] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer
Science, 38:293–306, 1985.

[7] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Clustering
data streams: Theory and practice. IEEE Transactions on Knowledge and Data Engineering, 2003.

[8] Amit Kumar, Yogish Sabharwal, and Sandeep Sen. A simple linear time (1 + ε)-approximation algo-
rithm for k-means clustering in any dimension. In Proceedings 45th IEEE Symposium on Foundations
of Computer Science, 2004.

[9] Stuart P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory,
28:129–137, 1982.

[10] Yehuda Vardi and Cun-Hui Zhang. A modified Weiszfeld algorithm for the Fermat-Weber location
problem. Mathematical Programming, 90(3):559–566, 2001.

5


