
7 Approximate Nearest Neighbors

When we have a large data set with n items where n is large (think n = 1,000,000) then we discussed two
types of questions we wanted to ask:

(Q1): Which items are similar?
(Q2): Given a query item, which others are similar to the query?

For (Q1) we don’t want to check all roughly n2 distances (no matter how fast each computation is), and for
(Q2) we don’t want to check all n items. In both cases we somehow want to figure out which ones might be
close and the check only those.

We discussed LSH as a general technique to answer (Q1), but it did not really answer how to solve (Q2)
since it still needed to at least look at each element once.

The key to solving this problem is pre-computation. We will first build a data structure DP on the data
set P . Then we can ask DP questions and expect fast answers. For instance, given a query object q we can
ask for all points within distance r of q in P with notation DP (q, r) = {p ∈ P | d(p, q) ≤ r}. Or we can
ask for the nearest neighbor of q in P denoted DP (q) = arg minp∈P d(p, q).

With LSH, this preprocessing was to precompute all hash bins for each object in P . Then for a query
point q, compute its hash bins, and check the exact distance to those that fall in all bands in at least one set
of bands. But LSH is not the only way, and other techniques typically work better in “low” and “medium”
dimensions.

7.1 SIFT Features
We begin with an example of when you do actually have high-dimensional data. A SIFT (scale-invariant
feature transform) data point is 128-dimensional, and is often treated as if it is in R128. Its used to identify
“interesting” features in images, and has been enormously popular and useful. There are others that per-
form similarly (e.g., SURF, BRISK) and sometimes it is useful to concatenate these to create even higher
dimensional vectors.

So, what is an image? It is list of pixels arranged in a grid. Each pixel is either a single grey-value (there
are typically 256 shades of grey, not 50 :)), or has three rgb-values denoting the pixel’s component in red,
green, and blue. Lets assume we are dealing with a black and white image for now and that each value x is
in [0, 1], where the actual stored number, say x = 52 represents 52/256.

These pixels are usually stored just in a single list, but we will think about their geometric arrangement.
Each pixel has 8 neighbors as illustrated in Figure 7.1(Right). Then we measure the gradient in these 8
directions (a rough approximation of this can be seen as)

〈N1−X,N2−X,N3−X,N4−X,N5−X,N6−X,N7−X,N8−X〉

and this corresponds with 8 dimensions. The gradient of images tends to be a much more reliable entity than
the absolute pixel value. And the gradient is supposed to remove the shift.

Then rotate the neighbors so the first one has the maximum gradient value. For instance if this is N6,
then set the gradient at location i to be (i − 5) mod 8. The actual transform is a bit more subtle. This is
supposed to remove the rotation.

Finally we need to remove the scale. We do this by considering a 4 x 4 grid of pixels around each pixel
X . For each one of these 16 locations (at various scaled distance from X) we store one of the 8-valued shift

1

X

N1 N2 N3

N4

N5N6N7

N8

Figure 7.1: (Left) An example images, with grid illustrating the notion that an image is just a set of pixels.
There are actually many more pixels than drawn here. (Right) Shows a pixel X and its 8 neighboring pixels.

and rotation invariant gradient vectors. The combination of these 16 vectors provides 8× 16 = 128 values.
And this set of values is the SIFT vector at X .

For an image, there are specialized ways to only keep the “interesting” ones which appear around corners.
These are done through finding local maximum of the difference between Gaussian blurring at similar scales.
Also depending on the scale used, this may suggest adjusting the scale of a ”pixel” in the above construction.

7.2 Approximate Nearest Neighbors
We now answer question (Q2). We will focus on a data set P ∈ Rd where |P | = n is quite large (think
millions). We will focus mainly on Euclidean distance d(p, q) = ‖p− q‖2.

Given a query point q ∈ Rd then φP (q) = arg minp∈P d(p, q) is the nearest neighbor of q. For d = 1,
this is possible with about log n time using a balanced binary tree on P (sorted on the one-dimensional value
of each p ∈ P). For really large data sets, a B-tree works better with the cache. It splits each node of the
tree into B pieces and each leaf has at most B elements. B is set as the block size of the cache.

7.2.1 Small Dimensions (d = {2, 3})
For general d, this can be done exactly by building a Voronoi diagram on P ; Vor(P), it is a decomposition
of Rd into n cells, and each cell vp is associated with one point p ∈ P so that each q ∈ vp has p =
arg minp′∈P d(p, q). The complexity of Vor(P) is the numbed of boundary sections (d′-dimension facets
for 0 ≤ d′ ≤ d) needed to describe all cells in Vor(P). The complexity of the Voronoi diagram can be as
large as Θ(ndd/2e). This means for d = {1, 2} it is linear size, but it grows exponentially in size as d grows.
In many practical cases, the size of the Voronoi diagram may be closer to linear in d = {3, 4, 5}, but very
rarely in even higher dimension.

So in low dimensions, d = {2, 3} data structures (based on Vor(P)) can be constructed to find the nearest
neighbor in about log(n) time.

7.2.2 Approximate Nearest Neighbors
Often the exact nearest neighbors are unnecessary. Consider many points P very close to the boundary of a
circle (or higher dimensional sphere), and a single query point q at the center of the circle (or sphere). Then

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah

all points are about the same distance away from q. Since the choice of distance is a modeling choice, it
should often not matter which points is returned.

So we introduce a parameter ε ∈ (0, 1], and we say a point p such that d(p, q) ≤ (1 + ε)d(φP (q), q) is
an ε-approximate nearest neighbor of q. There can be many such points, and finding one of these can be
dramatically simpler and faster (especially in practice) than finding the exact nearest neighbor. This becomes
essential in high dimensions.

7.2.3 Medium Dimensions (d ∈ [3− 12+])
In medium dimensions (usually between d = 3 and say d = 12, but miles may vary), a hierarchical spatial
decomposition can be used to quickly find approximate nearest neighbors. Think of all points being in a box
B = [0, 1]d (assume all points are in [0, 1]d). In each level of the hierarchy, the box is divided into two (or
more) smaller boxes. This hierarchy reaches the bottom (the leaf of the tree) when there is at most 1 point
(or often more efficiently some constant number like 10 or 20 points) in the box.

These structures are queries with a point q as follows.

• First, find the leaf B` that contains q. Find τ` = φP∩B`
(q). This provides an upper bound on the

distance to the nearest neighbor. Specifically any box Bi such that

min
x∈Bi

d(x, q) ≥ τ`/(1 + ε) (7.1)

can be ignored.
• Second, walk up the hierarchy, visiting sibling boxes Bi to the current one visited B`. If Bi satisfies

equation (7.1) then we continue up the hierarchy. Otherwise find τi = φP∩Bi(q) and if τi < τ`, set
τ` ← τi and move up the hierarchy. (Note that τiφP∩Bi(q) can be answered with an approximate
query using the hierarchy structure.) Denote the parent node `, as the new active node.
• Stop when the root is reached and B` = B.

The key structures most often used are

• kd-tree: It divides a box, by alternatively splitting each dimensions. So if there are d = 3 dimensions,
then the first split is on the x-dimension, the second level on the y-dimension, the third on the z-
dimension, and then the fourth on the x-dimension again, and so on. The choice of the split is the
medial point along that dimension.

This guarantees that it is balanced, so it has log2 n levels, and is of size 2n.

• quad-tree: It divides each box into 2d axis-aligned rectangles around the geometric center of the box.
Each box on the same level is the same size and shape. So the size of each box decreases each level,
but not necessarily the size of the point set.

Most algorithms with theoretical guarantees use some variant of the quad-tree. In particular a com-
pressed quad-tree (where empty nodes and nodes where only one child is non-empty are removed)
can be shown to find the leaf containing q in O(log n) time and have size O(n) and take O(n log n)
to construct.

• R-trees: These structures divide a boxB into two (or more) rectangles (that are possibly overlapping)
that contains all P ∩B. These can work very well in practice if a good set of rectangles can be found
at each level, but finding the best set of rectangles can be challenging. Can achieve searching bounds
of about 2d log n.

The dimension that these work in depend on how large of ε is permitted, and how much the data looks
like it is actually in a lower dimension. R-trees and compressed quad trees adapt better than naive kd-trees.

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah

7.2.4 High Dimensions (d > 12)
The problem in higher dimensions (d > 12) is that just about all distance look almost the same. In data
randomly inside a cube or ball, most points are about the same distance apart!

In particular, these structures typically work with boxes since they are easier to compute with. But we
really want all points within a ball. And as dimensions get larger, balls look less and less like boxes.

The volume of a unit ball (radius 1) in Rd is

vol(B(d, rad = 1)) =
πd/2

Γ(d/2 + 1)
radd ≈ πd/2

(d/2)!
.

So it gets small as d→∞.
On the other hand, the volume of a unit cube (side length 2) in Rd is

vol(C(d, rad = 1)) = 2d.

So it gets large (quickly goes to∞) as d→∞.
As in rectilinear search we get everything in the box, when we want everything in the ball. And this

becomes a big difference. So what can be done?

• ANN: is a library developed by David Mount and others. It basically pushes rectilinear kd-trees to the
limit with various sampling and geometric approximate techniques. Reports are that this can scale to
maybe d = 20, but depends largely on the niceness of the data.

• LSH: precompute the hash functions and placement of all p ∈ P in the hashes. If the number of
hashes is about the same as the dimension, then this is linear space. Reports of public code (by Alex
Andoni) are up to 100s of dimensions. There are other variants that have reportedly surpassed this
code, but its a good starting place.

• random rotations kd-tree: Instead of alternating by the dimensions (and on their axis), find a random
dimension and split on that dimension. Purely random does not work all that well and there are several
heuristics that work pretty well (and some have provable guarantees). One is, choose several random
directions, see which one has best geometric split, and use that one. Another is to choose two random
points, use that direction as the split direction (I am not sure I have seen this one in a publication - it
may not have good worst case guarantees, but should have good average case guarantees).

• clustering kd-trees: On each node, construct a 2-means clustering (or any other fast clustering algo-
rithm) and split the data set so each cluster is in one of the two subtrees. David Lowe (the inventor
of SIFT) has an implementation of this that works very well for SIFT features in R128 (and seems to
beat other variants up to that date ≈ 2007).

These last two work well when data is intrinsically in a lower dimension space. These techniques adapt
to these data-dimensions, and then the behavior is similar to the regular (axis-aligned) kd-tree in the corre-
sponding data dimension.

This is still an active and exciting research area!

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah

