
14 Singular Value Decomposition

For any high-dimensional data analysis, one’s first thought should often be: can I use an SVD? The singular
value decomposition is an invaluable analysis tool for dealing with large high-dimensional data. In many
cases, data in high dimensions, most of the dimensions do not contribute to the structure of the data. But
filtering these takes some care since it may not be clear which ones are important, if the importance may
come from a combination of dimensions. The singular value decomposition can be viewed as a way of
finding these important dimensions, and thus the key relationships in the data.

On the other hand, the SVD is often viewed as a numerical linear algebra operation that is done on a
matrix. It decomposes a matrix down into three component matrices. These matrices have structure, being
orthogonal or diagonal.

The goal of this note is to bridge these views and in particular to provide geometric intuition for the SVD.
The SVD is related to several other tools which will also consider:

• PCA (Principal Component Analysis): a geometric interpretation, after centering the data
• Eigen-decomposition: shares the same components after data has been made “square.”
• MDS (Multidimensional Scaling): Given just pairwise distances, convert to eigen-decomposition

Data. We will focus on a datasetA ⊂ Rd whereA is a set of n “points.” At the same time, we will think of
A as a n× d matrix. Each row corresponds to a point, and each column corresponds to a dimension. (Some
interpretations reverse these so a column is a point, a row is a dimension – but they are really the same.)

Then the goal will be to find a projection µ : Rd → Rk, where k � d and in particular Rk ⊂ Rd, so that
we minimize ∑

p∈P
(p− µ(p))2.

The SVD will precisely provide us this answer!

14.1 The SVD Operator
First we document what the following operation in matlab does:

[U, S, V ] = svd(A)

=A U S
VT

The backend of this (in almost any language) calls some very carefully optimized Fortran code as part
of the LAPACK library. First of all, no information is lost since we can simply recover the original data as
A = USV T , up to numerical precision, and the Fortran library is optimized to provide very high numerical
precision.

1



But there is more structure lurking in these matrices. S is n × d and almost all 0s, except for along the
diagonal: S = diag(σ1, σ2, . . . , σr) where r ≤ d and where r is the rank of P . That is, S is a diagonal
matrix with only entries on the diagonal. These values are (generally) output in non-increasing order so
σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0. They are known as the singular values of A.

Both U (size n× n) and V (size d× d) are orthogonal matrices. An orthogonal matrix is also a rotation
matrix (more on this later), that can also allow mirror flips. They have the following properties:

• each column vi has ‖vi‖ = 1

• each pair of columns vi, vj have 〈vi, vj〉 = 0

• Its transpose is its inverse V T = V −1, so V TV = I .

Moreover the columns (and rows) of V form a d-dimensional orthogonal basis (usually not the original
basis). That is, for any x ∈ Rd we can write

x =
t∑

i=1

αivi

for some scalar αi = 〈x, vi〉. This is the ith coordinate in the new basis.
This implies that for any x ∈ Rd that ‖V x‖ = ‖x‖ (it can only rotate or flip).
Moreover the columns of V = [v1 v2 . . . vd] are known as the right singular vectors and the columns of

U = [u1 u2 . . . un] are known as the left singular vectors.

=A U

S VT

one data point

left singular vector

right singular vector

singular value
importance of singular vectors
decreasing rank order: �j � �j+1

important directions (vj by �j)
orthogonal: creates basis

maps contribution of data points
to singular values

v1

v2

x

kAxk

14.1.1 Example

Consider the set of n = 4 points in R2 {a1 = (4, 3), a2 = (1, 2), a3 = (−1,−3), a4 = (−4, 2)}. Note,
these are chosen so that average x- and average y-coordinate is 0; it is centered. We can equivalently write
this as a the matrix

A =


4 3
2 2
−1 −3
−5 −2

 .

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah



Then [U, S, V ] = svd(A) where

U =


−0.6122 0.0523 0.0642 0.7864
−0.3415 0.2026 0.8489 −0.3487
0.3130 −0.8070 0.4264 0.2625
0.6408 0.5522 0.3057 0.4371

 ,

S =


8.1655 0

0 2.3074
0 0
0 0

 ,

V =

(
−0.8142 −.5805
−0.5805 0.8142

)
.

We will continue to use this example as we explain the geometry.

14.1.2 Geometry of the SVD

We will see how the matrix A transforms a circle in R2 to a two-dimensional ellipse the lives in R4. This
ellipse will represent the size and magnitude of the principal components.

We will start with an arbitrary point x such that ‖x‖ = 1 (so it is on the unit circle), and see what happens
in b = Ax. Specifically we will break down the process b = USV Tx by examining ξ = V Tx, then
η = Sξ = SV tx and then b = Uη = USV Tx.

Step 1 (ξ = V Tx): Since V T is orthogonal (and x ∈ R2) then it acts as a rotation. It puts x in the basis of
V T as a point ξ. Note that the orthogonal vectors v1 and v2 (of V = [v1, v2]) become the axis to describe ξ.

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah



x1

x2

v1

v2

x

v1

v2

⇠

Step 2: (η = Sξ): Note that ξ = (ξ1, ξ2) is still on a circle since it still has ‖ξ‖ = 1. The S matrix is a
diagonal matrix, so it just scales the axis. Each ith axis is scaled according to σi. Specifically, η1 = σ1ξ1
and η2 = σ2ξ2, where ξ1 and ξ2 are coordinates in the basis along v1 and v2, respectively.

v1

v2⌘

Step 3: (b = Uη): We now apply another rotation. Notice that S had two rows that were all 0. This
effectively scales η along two axes it did not know it had. But it sets these values to 0. So η = (η1, η2, 0, 0) ∈
R4.

Now we again use that U is a rotation (with possible mirror flips), but for points in R4. Each axis now
represents the component along the direction of a point. Note that now ‖η‖ = ‖b‖ = ‖S‖ = ‖A‖.

Unfortunately, this is harder to draw, but it looks like step 1, but in higher dimensions.

14.1.3 Best Rank-k Approximation

So how do we get this subspace that we project onto?

The vectors V = [v1, v2, . . . , vd] are such that they describe the most important axis of the data in the
following sense. The first right singular vector v1 describes which direction has the most variance. The
variance is precisely described by σ1. Then since v2, . . . , vd are each orthogonal to v1, this implies that v2
is the direction (after v1 has been factored out) that has the most variance.

So the k-dimensional subspace of Rd is defined by basis [v1, v2, . . . , vk], the first k-right singular vectors.

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah



=A U

S VTkk

kk

So how large should k be? The amount of squared “mass” captured by vk is σ2k. So if σk+1 is small, we
do not need to keep vk+1. It means there is little variation along that direction, and each other directions not
yet captured. Or use “elbow” technique where the difference between σk − σk+1 is large.

• In many statistical and numerical datasets, often σk decay quickly. Usually for k not too large σk+1

is very close to 0.

• In many internet scale datasets (think Facebook graph), then typically σk decay slowly (they have a
“heavy tail”). Often

∑∞
i=k+1 σ

2
i ≥ 1

10

∑∞
i=1 σ

2
i = 1

10‖A‖2F , even at the appropriate cut-off k. (This
may (or may not) indicate that SVD is the wrong approach to finding core structure.)

So what do we know:

• V does “bookkeeping” of moving original basis to new one,

• S stretches it accordingly (along new basis), and

• U describes results with respect to actual data points.

So to get the projection of the points A in the new subspace as Rk we create Ak ∈ Rk as

Ak = UkSkV
T
k

where Uk = [u1, u2, . . . , uk], S = diag(σ1, σ2, . . . , σk) and V = [v1, v2, . . . , vk].
So the subspace is defined using just Vk. Then Sk describes the importance along each direction, and Uk

relates it to the actual points.
The following two important optimality facts are known about Ak. Let Ai,j be the entry in A at the

intersection of the ith row and jth column. Let [Ak]i,j represent the same element for Ak.

• Ak is the rank k matrix that minimizes ‖A − Ak‖2F =
∑

i

∑
j(Ai,j − [Ak]i,j)

2, the Frobenius norm
of the difference of A and Ak. In fact ‖A−Ak‖2F =

∑d
i=k+1 σ

2
i .

• Ak is the rank k matrix that minimizes ‖A−Ak‖2 = maxx ‖(A−Ak)x‖/‖x‖, the spectral norm of
the difference of A and Ak. In fact, ‖A−Ak‖2 = σk+1.

An alternative interpretation, is that Ak captures the directions Vk in which A has the most variance.

14.2 Relationship to PCA, Eigendecomposition, and MDS
We next will relate the SVD to other common matrix analysis forms: PCA, Eigendecomposition, and MDS.
One may find literature that uses slightly different forms of these terms (they are often intermingled), but I
believe this is the cleanest, most consistent, mapping.

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah



14.2.1 Relationship to PCA
Principle Component Analysis (PCA) is the result of the best rank-k SVD after centering the data.

Centering is adjusting the original input data A so that each column (each dimension) has an average
value of 0. This is easier than it seems. Define āj = 1

n

∑n
i=1Ai,j . Then set each Ãi,j = Ai,j − āj to

represent the entry in the ith row and jth column of centered matrix Ã.
There is a centering matrixCn = In− 1

n11T where In is the n×n identity matrix, 1 is the all-ones column
vector (of length n) and thus 11T is the all-ones n× n matrix. Then we can also just write Ã = CnA.

Now to perform PCA on a data set A, we compute [U, S, V ] = svd(CnA) = svd(Ã).
Then the resulting singular values diag(S) = {σ1, σ2, . . . , σr} are known as the principle values, and the

top k right singular vectors Vk = [v1 v2 . . . vk] are known as the top-k principle directions.
This often gives a better fitting to the data than just SVD. The SVD finds the best rank-k approximation

ofA, which is the best k-dimensional subspace (up to Frobenius and spectral norms) which passes through
the origin. If all of the data is far from the origin, this can essentially “waste” a dimension to pass through
the origin.

Note, this implies that PCA finds the best k-dimensional subspace Vk so
∑

a∈A ‖a − πVk
(a)‖2 is mini-

mized, where projection πVk
(a) = arg minx∈Vk

‖a− x‖ is the point on subspace Vk (or in matrix terms, in
the span of Vk) closest to a.

14.2.2 Relationship to Eigen-Decomposition
Recall that an eigenvalue λ and eigenvector v of a matrix M are such that Mv = λv, and we usually
normalize so that ‖v‖ = 1.

We can write
ATAV = (V SUT )(USV T )V = V S2

so the right singular vectors vi are the eigenvectors of ATA. Similarly

AATU = (USV T )(V SUT )U = US2

so the left singular vectors ui are the eigenvectors of AAT . Thus also the squared singular values σ2i are
eigenvalues of ATA and of AAT .

14.2.3 Relationship to MDS
A distance matrix D is an n× n matrix where entry Di,j is the distance between the ith and the jth point.

Multi-Dimensional Scaling (MDS) has the goal of taking a distance matrix D for n points and giving
low-dimensional (typically) Euclidean coordinates to these points so that the embedded points have similar
spatial relations to that described in D. If we had the original data set A which resulted in D, we could just
apply PCA to find the embedding. It is important to note, in the setting of MDS we are typically just given
D, and not the original data A. However, as we will show next, we can derive AAT using only D.

A similarity matrix M is an n × n matrix where entry Mi,j is the similarity between the ith and the jth
data point. The similarity often associated with Euclidean distance ‖ai − aj‖ is the standard inner (or dot
product) 〈ai, aj〉. We can write

‖ai − aj‖2 = ‖ai‖2 + ‖aj‖2 − 2〈ai, aj〉,

and hence
〈ai, aj〉 =

1

2

(
‖ai‖2 + ‖aj‖2 − ‖ai − aj‖2

)
. (14.1)

Next we observe that for the n× n matrix AAT the entry [AAT ]i,j = 〈ai, aj〉. So it seems hopeful we can
derive AAT from D using equation (14.1). However, we need ‖ai‖2 = 〈ai, ai〉 and ‖aj‖2 = 〈aj , aj〉.

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah



Since the embedding has an arbitrary shift to it (if we add a shift vector s to all embedding points,
then no distances change), then we can arbitrarily choose a1 to be at the origin. Then ‖a1‖2 = 0 and
‖aj‖2 = ‖a1 − aj‖2 = D2

1,j . Using this assumption and equation (14.1), we can then derive the similarity
matrix AAT . Then we can run the eigen-decomposition on AAT are use the coordinates of each point along
the first k eigenvectors to get an embedding. This is known as classical MDS.

It is often used for k as 2 or 3 so the data can be easily visualized.
There are several other forms that try to preserve the distance more directly, where as this approach

is essentially just minimizing the squared residuals of the projection from some unknown original (high-
dimensional embedding). One can see that we recover the distances with no error if we use all n eigen-
vectors. This implies the cool fact that any n × n distance matrix can be embedded with 0 error using n
dimensions.

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah


