
18 Lasso – Regularized Regression

Recall the (high-dimensional) regression problem. The input is a point set P ⊂ Rd+1 with n points
{p1, . . . , pn}. We can also think of P as a matrix, and decompose it into two parts P = [PX y] where PX
represents the first d columns and y represents the last column. Here we use Pj to denote the jth column.
Then the goal is to find a set of coefficients A = [a0, a1, a2, . . . , ad]

T so that a function fA(p) =
∑d

i=0 aipi
approximates the corresponding values py = pd+1 (assuming p0 = 1).

The standard least squares formulation finds A that minimizes∑
pi∈P

(fA(pi)− yi)2. (18.1)

We can write X = [1 PX] as a ((d+ 1)× n) matrix where the first column is all 1s and the last d columns
are PX . Now equation (18.1) can be rewritten as

min
A
‖XA− y‖2.

Then we can minimize equation (18.1) by solving for

A = (XTX)−1XT y. (18.2)

18.1 Regularization
Recall that by the Gauss-Markov Theorem, that (18.2) is the minimum variance (least squares) solution to
the problem with P given that it is unbiased. However, it may be advantageous to bias towards a small slope
solution.

This models the residual as only in the y direction, and thus implicitly assumes that the X coordinates
have no error. Thus when noise happens, it happens in the y-coordinate, and we want to minimize the effect
of this. To do so, we can “regress to the mean.”

Example: Consider a hard TRUE-FALSE test. Each student knows some fraction of the answers (say 50%
of them) and guess on the rest. The expected score is 75%. Say this was the case for 100 students, and
we took the 10 students how scored the best; say their average score was 80%. If we gave these same 10
students another similar test (still TRUE-FALSE, and they know half, guess half), then what is going to be
their expected score: 75%. That is we expect them to regress towards the mean!

So in linear regression, we expect that y-values will not be as wild in this observed data as it would be if
we observed new data. So we want to give a prediction that made more extreme data have less affect. These
solutions can have overall less variance, but do not have 0 bias.

Another view is that we have a prior (as in Bayesian statistics), say of weight s/(s + n), that the mean
value of the y-coordinates is correct. So we don’t want to entirely use the raw data.

Tikhonov regularization. To this end, we can change the loss function, that which was measuring the
error of our solution A. The Tikhonov regularization for a parameter s ≥ 0 finds

argmin
A
‖XA− y‖2 + s‖A‖2. (18.3)

This is also known as ridge regression. Magically, this can be solved just as easily as least squares by setting

A = (XTX + s2)−1XT y.

1

Lasso. An alternative approach (the focus here) will be a bit more complicated to solve, but has a couple
of other very nice properties. It is called the Lasso, or alternatively basis pursuit; for a parameter s ≥ 0 it
finds

argmin
A
‖XA− y‖2 + s‖A‖1. (18.4)

Note that the only difference is that it has an L1 norm on the ‖A‖ instead of the L2 norm in ridge regression.
This also prevents the simple matrix-inverse solution of ridge regression. However it will have two other
very nice properties:

• In high dimensions, it will bias towards sparse solutions
• It forces one to consider multiple values of s, and hopefully choose a reasonable one.

We will mainly focus on the Least Angle Regression method to solve for A.

Orthogonal Matching Pursuit. However, before that, lets note that one can also use Orthogonal Match-
ing Pursuit (OMP). Here it is sometimes called forward subset selection. This may be slightly easier to
implement, but will not provide the optimal solution and allows one to cherry-pick a value s.

Algorithm 18.1.1 Orthogonal Matching Pursuit
Set r = y; and aj = 0 for all j ∈ [d].
for i = 1 to t do

Set Xj = argmaxXj′∈X |〈r,Xj′〉|.
Set aj = argminγ ‖r −Xjγ‖2 + s|γ|.
Set r = r −Xjaj .

Return A.

18.2 Least Angles Regression
The first insight is that instead of (18.4) it is equivalent to solve

argmin
A
‖XA− y‖22 such that ‖A‖1 ≤ t. (18.5)

for some parameter t. Note that we have replaced the parameter s with another one t. For any value of s and
solution As to (18.4), there is a value t that provides an identical solution At to (18.5). To see this, solve for
As, and then set t = ‖As‖1.

This same dual version exists for ridge regression as well. Why is this useful?

Sparsity. This biases solutions to have 0 along many of the coordinates aj . This is illustrated in Figure
18.1 where the Lasso solution for A is restricted to lie within an L1 ball of radius t, but otherwise be as
close to y as possible. The least squares solution is the best possible fit for A. We can see the extra L2 error
around this solution which is minimized with respect lying in a radius t L1 ball for Lasso or L2 ball for
Tikhonov regularization.

Note that the L1 ball has “pointy” corners, and thus bias solutions for A towards these corners. The
corners have some coordinate of A as 0. In higher dimensions, this L1 ball has even more corners, and they
play an even more prominent role in the solutions to these minimization problems.

As t becomes smaller, it is more and more likely that the solution to A is found on a higher-degree corner.
But also the solution found becomes further and further away from the least squares solution. If we set
t = ∞ then the Lasso (and Tikhonov) solution is the least squares solution. How do we balance these
aspects?

CS 6140 Data Mining; Spring 2015 Instructor: Jeff M. Phillips, University of Utah

kAk2

kAk1

t

A with Lasso

A with Tikhonov

A with LS

Figure 18.1: Radius t ball under L1 and L2, and the results of Lasso and Tikhonov regularization.

Increasing t. As we increase t (our coefficient budget), then we allow some aj to increase. If we start
with t = 0, then all aj = 0. Now using the (piecewise-) linear equation t =

∑d
j=1 ‖aj‖d and

r(t) = y −
d∑
j=1

Xjaj(t).

The goal is to minimize ‖r(t)‖, and we note that changing some aj have more effect on r(t) than others.
First find, j1 = argmaxj |〈Xj , r〉|. This is the coordinate with maximum influence on r(t). We vary

this first and set aj1(t) = aj · t. We now increase t, while only varying aj (as specified) until some other
coordinate is worth increasing.

Next find j2 such that j2 6= j1 and has

|〈Xj1 , r(t)〉| = |〈Xj2 , r(t)〉|.

We can solve for the value t at which this will happen for each j 6= j1 since the above is a linear equation in
t. The index j2 is selected in that it has the smallest value t2 at which this equality happens. This is the first
time that (18.5) is minimized with 2 non-zero coefficients. The next step is to reset the correlations (via the
first derivatives) such that |b1|+ |b2| = 1 as

aj1(t) = aj−1(t2) + (t− t2)b1 for t ≥ 0

aj2(t) = (t− t2)b2 for t ≥ t2.

This implies that as t increase, the optimal choice in aj is linear in t with slopes defined by b1, b2, . . .
We continue this, in each ith step finding a time ti at which increasing some coefficient aji will have
|〈Xji , r(ti)〉| = |〈XJ , r(ti)〉| where J is the set of indices we are tracking and XJ is the subset of columns
of X corresponding to those indices. Then we add this ji to J , update r(t) for t ≥ ti, and recompute
the derivatives b1, . . . , bi, and find the next value ti+1 and so on. See Algorithm 18.2.1 for a more formal
description of the algorithm.

So in the process we have solved the optimal choice of A for each value t (and hence each value s).
We can choose the best one with cross-validation where we leave out some data and evaluate how well the
model works on that data (more later). We can maintain this estimate and solve for the minimum (since we
have all linear equations) along the way.

CS 6140 Data Mining; Spring 2015 Instructor: Jeff M. Phillips, University of Utah

Algorithm 18.2.1 Least Angle Regression
Set aj = 0, bj = 0 for all j ∈ [d].
Set j1 = argmaxj |〈Xj , r(0)〉|; bj1 = 1; and J = {j1}.
Set r(t) = y −∑d

j=1Xjaj(t) where aj(t) = bj · t. aj1(t) = t, otherwise aj(t) = 0 for j 6= j1
for i = 2 to n do

for all j /∈ J do
Find τj > t such that |〈Xj , r(t)〉| = |〈Xj1 , r(t)〉| Note: all j ∈ J have same |〈Xj , r(t)〉|

Set ti = min τj and ji = argminj τj ; J = J ∪ ji.
Solve for bj for all j ∈ J such that

∑
j∈J |bj | = 1. Take derivatives of |〈Xj , r(t)〉| and normalize

For t ≥ ti redefine r(t) = y −∑d
i=1Xjaj(t) where aj(t) = aj(ti) + (t− ti)bj .

Return A(t) when its cross-validation score is smallest.

There is a variant of this algorithm where we may want to snap values aj to 0 even if j ∈ J . This happens
since initially bj may be positive, but as J increases, it may become negative. Then when aj hits 0, we
remove it from J (this can time can be treated as its τj value.). Then we can later re-add it to J . This is
needed to get the optimal solution for any t. Is a little more work, but could require an exponential number
of steps.

CS 6140 Data Mining; Spring 2015 Instructor: Jeff M. Phillips, University of Utah

