
12 Heavy Hitters

A core mining problem is to find items that occur more than one would expect. These may be called outliers,
anomalies, or other terms. Statistical models can be layered on top of or underneath these notions.

We begin with a very simple problem. There are m elements and they come from a domain [n] (but both
m and n might be very large, and we don’t want to use Ω(m) or Ω(n) space). Some items in the domain
occur more than once, and we want to find the items which occur the most frequently.

If we can keep a counter for each item in the domain, this is easy. But we will assume n is huge (like all
possible IP addresses), and m is also huge, the number of packets passing through a router in a day.

12.1 Streaming
Streaming [3] is a model of computation that emphasizes space over all else. The goal is to compute
something using as little storage space as possible. So much so that we cannot even store the input. Typically,
you get to read the data once, you can then store something about the data, and then let it go forever! Or
sometimes, less dramatically, you can make 2 or more passes on the data.

Formally, there is a stream A = 〈a1, a2, . . . , am〉 of m items where each ai ∈ [n]. This means, the size of
each ai is about log n (to represent which element), and just to count how many items you have seen requires
space logm (although if you allow approximations you can reduce this). Unless otherwise specified, log is
used to represent log2 that is the base-2 logarithm. The goal is to compute a function g(A) using space that
is only poly(log n, logm).

Let fj = |{ai ∈ A | ai = j}| represent the number of items in the stream that have value j. Let

F1 =
∑

j fj = m be the total number of elements seen. Let F2 =
√∑

j f
2
j be the sum of squares of

elements counts, squarerooted. Let F0 =
∑

j f
0
j be the number of distinct elements.

12.2 Majority and Heavy Hitters
One of the most basic streaming problems is as follows:

MAJORITY: if some fj > m/2, output j. Otherwise, output anything.
How can we do this with log n+ logm space (one counter c, and one location `)?

Algorithm 12.2.1 Majority(A)
Set c = 0 and ` = ∅
for i = 1 to m do

if (ai = `) then
c = c+ 1

else
c = c− 1

if (c ≤ 0) then
c = 1, ` = ai

return `

Why is Algorithm 12.2.1 correct? If fj > m/2, then
• if (` 6= j) then c decremented at most < m/2 times, but c > m/2

• if (` = j) can be decremented < m/2 times, but incremented > m/2 times.

On the other hand, if fj < m/2 for all j, then any answer is ok.

1

12.2.1 Heavy Hitters
Now we generalize the MAJORITY problem to something much more useful.
k-FREQUENCY-ESTIMATION: Build a data structure S. For any j ∈ [n] we can return S(j) = f̂j such

that
fj −m/k ≤ f̂j ≤ fj .

From another view, a φ-heavy hitter is an element j ∈ [n] such that fj > φm. We want to build a data
structure for ε-approximate φ-heavy hitters so that it returns

• all fj such that fj > φm

• no fj such that fj < φm− εm
• (any fj such that φm− εm ≤ fj < φm can be returned, but might not be).

12.2.2 Misra-Gries Algorithm
[Misra+Gries 1982] Solves k-FREQUENCY-ESTIMATION in k(logm+ log n) space [2].

The trick is to run the MAJORITY algorithm, but with (k − 1) counters instead of 1. Let C be an array of
(k − 1) counters C[1], C[2], . . . , C[k − 1]. Let L be an array of (k − 1) locations L[1], L[2], . . . , L[k − 1].

Algorithm 12.2.2 Misra-Gries(A)
Set all C[i] = 0 and all L = ∅
for i = 1 to m do

if (ai ∈ L) (at index j) then
C[j] = C[j] + 1

else
if (|L| < k − 1) then

For some j with L[j] = ∅: C[j] = 1 & L[j] = ai
else

for j ∈ [k − 1] do C[j] = C[j]− 1
for j ∈ [k − 1] do

if (C[j] ≤ 0) do L[j] = ∅
if (|L| < k − 1 & ai /∈ L) then

For some j where C[j] = 0: C[j] = 1 & L[j] = ai
return C, L

Then on a query q ∈ [n] to C,L, if q ∈ L (specifically L[j] = q), then return f̂q = C[j]. Otherwise return
f̂q = 0.

Analysis: Why is Algorithm 12.2.2 correct?

• A counter C[j] representing L[j] = q is only incremented if ai = q, so we always have

f̂q ≤ fq.

• If a counterC[j] representingL[j] = q is decremented, then k−2 other counters are also decremented,
and the current item’s count is not recorded. This happens at most m/k times: since each decrement
destroys the record of k objects, and since there are m objects total, this process only happens at most
m/k times. Thus a counter C[j] representing L[j] = q is decremented at most m/k times. Thus

fq −m/k ≤ f̂q.

CS 6140 Data Mining; Spring 2015 Instructor: Jeff M. Phillips, University of Utah

We can now apply this to get an additive ε-approximate FREQUENCY-ESTIMATION by setting k = 1/ε.
We return f̂q such that

|fq − f̂q| ≤ εm.

Or we can set k = 2/ε and return C[j] + (m/k)/2 to make error on both sides.
Space is (1/ε)(logm+ log n), since there are (1/ε) counters and locations.

12.2.3 Count-Min Sketch
We now describe a completely different way to solve the HEAVY-HITTER problem, called the Count-Min
Sketch [Cormode + Muthukrishnan 2005] [1].

Start with t independent (random) hash functions {h1, . . . , ht} where each hi : [n]→ [k].
Now we store an 2d array of counters for t = log(1/δ) and k = 2/ε:

h1 C1,1 C1,2 . . . C1,k

h2 C2,1 C2,2 . . . C2,k

.
ht Ct,1 Ct,2 . . . Ct,k

Algorithm 12.2.3 Count-Min(A)
Set all Ci,j = 0
for i = 1 to m do

for j = 1 to t do
Cj,hj(ai) = Cj,hj(ai) + 1

After running Algorithm 12.2.3 on a stream A, then on a query q ∈ [n] we can return

f̂q = min
j∈[t]

Cj,hj(q).

This is why it is called a count-min sketch.

Analysis: Clearly fq ≤ f̂q since each counter has everything for q, but may also have other stuff (on hash
collisions).

Next we claim that f̂q ≤ fq +W for some over count value W . So how large is W ?
Consider just one hash function hi. It adds to W when there is a collision hi(q) = hi(j). This happens

with probability 1/k.
So we can create a random variable Yi,j that represents the overcount caused on hi for q because of

element j ∈ [n]. That is, for each instance of j, it increments W by 1 with probability 1/k, and 0 otherwise.
Each instance of j has the same value hi(j), so we need to sum up all these counts. Thus

• Yi,j =

{
fj with probability 1/k

0 otherwise.

• E[Yi,j] = fj/k.

Then let Xi be another random variable defined

• Xi =
∑

j∈[n],j 6=q Yi,j , and
• E[Xi] = E[

∑
j 6=q Yi,j] =

∑
j 6=q fj/k = F1/k = εF1/2.

CS 6140 Data Mining; Spring 2015 Instructor: Jeff M. Phillips, University of Utah

Now we recall the Markov Inequality. For a random variable X and a value α > 0, then Pr[|X| ≥ α] ≤
E[|X|]/α. Since Xi > 0, then |Xi| = Xi, and set α = εF1. And note E[|X|]/α = (εF1/2)/(εF1) = 1/2.
It follows that

Pr[Xi ≥ εF1] ≤ 1/2.

But this was for just one hash function hi. Now we extend this to t independent hash functions:

Pr[f̂q − fq ≥ εF1] = Pr[min
i
Xi ≥ εF1] = Pr[∀i∈[t](Xi ≥ εF1)]

=
∏
i∈[t]

Pr[Xi ≥ εF1] ≤ 1/2t = δ,

since t = log(1/δ).
So that gives us a PAC bound. The Count-Min Sketch for any q has

fq ≤ f̂q ≤ fq + εF1

where the first inequality always holds, and the second holds with probability at least 1− δ.

Space. Since there are kt counters, and each require logm space, then the total counter space is kt logm.
But we also need to store t hash functions, these can be made to take log n space each. Then since
t = log(1/δ) and k = 2/ε it follows the overall total space is t(k logm + log n) = ((2/ε) logm +
log n) log(1/δ).

Turnstile Model: There is a variation of streaming algorithms where each element ai ∈ A can either add
one or subtract one from corpus (like a turnstile at the entrance of a football game), but each count must
remain positive. This Count-Min has the same guarantees in the turnstile model, but Misra-Gries does not.

CS 6140 Data Mining; Spring 2015 Instructor: Jeff M. Phillips, University of Utah

Bibliography

[1] Graham Cormode and S. Muthukrishnan. An improved data stream summary: The count-min sketch
and its applications. Journal of Algorithms, 55:58–75, 2006.

[2] J. Misra and D. Gries. Finding repeated elements. Sc. Comp. Prog., 2:143–152, 1982.

[3] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends in Theoretical
Computer Science, 2003.

5

