
23 MapReduce

Revolution in large-scale programming with simple (appearing) system.

Big Data. MapReduce is a system for very large data with certain properties. Think logs of all uses, or the
web.

• The data is enormous. At least several terabytes ... could be much much more. It does not fit on one
single machine, it may require 100 or 1000 or more machines.

• The data is (fairly) static, in fact it would take a long time just to read the data (let alone write it).
When it is updated it is typically only appended. Ever rarer is data deleted.

The type of data is synonymous with the data science revolution (although that often occurs at smaller
scales). Instead of the scientific method where one

(1) proposes a hypothesis → (2) gathers data → (3) checks whether the data supports the hypothesis,

in data science one
(1) searches an existing corpus of large data for structure.

This “structure” is the hypothesis and its validation. Instead of trial and error, it is data mining to the rescue!
Here we address the most common system infrastructure, MapReduce, to support such process on truly

large datasets.

23.1 Distributed File System
Before understanding MapReduce, it is critical to understand the infrastructure that it is built on. Specifically
a distributed key-value store file system. In MapReduce, and inside Google, it is called the Google File
System (or GFS). In the open source version Hadoop, it is called the Hadoop File System (HDFS). Although
these ideas were not completely new, they may outlast MapReduce itself.

Item level. The data is typically stored in key-value pairs. This is very limiting (from a structure/DB point
of view), but is yet a very general data format. Each data element is given a key, and an associated set of
values. Examples:

• key = log id value = actual log

• key = web address value = html or out-going links

• key = document id in set value = list of words

• key = word in corpus value = how often it appears or list of pages on which it appears.

The key is a unique (or to some resolution) identifier of the object, and then the value can store anything.
Sometimes there will be an assumed format to the value. Sometimes there are many key-value pairs that
have the same key; this allows the information associated with they key to be stored in multiple places, and
updated without touching the original data.

Note, in high contrast to a traditional database system, we have eschewed locality. As we will see, we
will “bring the computation to the data,” to make up for this.

1



Block level. One could then imagine just filling up tons of hard drives with key-value pairs. However, this
is unwieldy. Rather, the items are stored in blocks of medium size. A typically HDFS block size is 64 MB
(but can be set differently).

Each block has a replication factor, a typical value is 3 (although 2 is not unheard of). This means it is
stored 3 times.

So each file (terabytes) is broken down into blocks (of size 64 MB) and then replicated some number (say
3) times. Then each such block is stored on a separate compute node. The replicas are always stored on
separate nodes, and especially neighboring blocks are tried to be stored on separate nodes.

This might seem strange: the principal of “locality” says that similar data should be stored nearby! (e.g.
sorting, search trees). So why do this?

• Resiliency: If one node dies, then the other versions can be used in place (and re-replicated the 3rd
version).

• Redundancy: If one node is slow, then another with same data can be used in place.

• Heterogeneity: The format is flexible. Usually 64 MB is enough for some degree of locality. Also,
by forcing nodes to carry assorted data, the computation on each node will tend to look more uniform
(but still not always).

23.2 How does MapReduce Work
Now that data is stored in key-value pairs in some distributed file system, we are going to kind of ignore
this. Just think of what you want to do with each individual item, that is each key-value pair.

1: Mapping: Typically, the initial format of the key-value pair is very rough. The data is just stored, but
not processed much yet, and in any particular order. It may contain many irrelevant parts of information (for
the current task). So the mapping phase is in charge of getting it into the right format. Keep in mind, this
data set is very large, so it is stored once, but may be used for many many different purposes.

The mapping phase takes a file, and converts into another set of key-value pairs. The values generally
contain the data of current interest, and the keys are used to obtain locality in the next part.

2: Shuffling: Output of Map is typically (roughly) as large as the original data, so it also cannot all fit on
one machine. The shuffle step puts all key-value pairs with the same key on one machine (if they can all
fit). The data is redistributed and mixed up, kind of what it would look like in the mapping of card positions
when shuffling a deck of cards...

It is sometimes called sort since this can be done by sorting all kets, and putting them in sorted order
on another set of machines (e.g. smallest in order on first machine, next smallest on next machine, and so
forth – the actually Implementation is more robust than this in several ways, but conceptually this is useful).
Sometimes it is useful to have nearby keys on the same machine (in addition to ones with the same values).

3: Reducing: The reduce step takes the data that has been aggregated by keys and does something useful
(application specific). This data is now all in the same location – we have locality.

1.5: Combine (optional): The key-value pair way of organizing data can be verbose. In from the same
block many values have the same key, then they will all be sent to the same Reduce node. So the Combine
step aggregates them into a single key-value pair before the Shuffle step.

This can make streaming on the Mapper more tricky.

CS 6140 Data Mining; Spring 2014 Instructor: Jeff M. Phillips, University of Utah



23.2.1 Implementation Notes
This system is designed to be extremely scalable (much of this is done behind the scenes), and to be ex-
tremely easy to use. The user only needs to write the Mapping and the Reduce step. The system takes care
of the rest. And these code snippets are often extremely short.

Often the map and reduce phase are streaming in that they only make one pass over the data. The Map
phase just scans the files once, and the reduce phase takes the key-value pairs in a stream (not necessarily
in sorted key order) and produces an output. However, this assumes it has enough storage to maintain
something for each key.

One of the powers of MapReduce that it inherits from the Distributed File System is that it is resilient.
There is one master node that keeps track of everything (by occasionally pinging nodes). If one node goes
down, then the master node finds all other nodes with the same blocks and asks them to do the work the
done node was supported to do. Again, this is all behind the scenes to the user.

23.2.2 Rounds
Sometimes it will be useful to use the output of one round of MapReduce as the input to another round.
This is often considered acceptable if it uses a constant number of rounds, log n may be too many. (If
n = 1, 000, 000, 000, then log2 n ≈ 30 may be too much).

In Hadoop, there may be a several minute delay between rounds (due to Java VM issues, and since it writes
all data from disk, and then re-reads it in the next round – for resiliency issues). This may be dramatically
less in other related systems, such as Googles internet MapReduce. New systems (e.g. Spark, RAMCloud
have bin introduced recently to specifically address this issue).

Last reducer. In general, the algorithms takes as long as the last reducer takes to finish; the next round
does not start until all reducers finish. Sometimes many things map to the same key, and then this takes
much longer. This effect is known as the curse of the last reducer.

In some cases, MapReduce implementations can overcome this by seeing if a reducer is slow (just since
the machine semi-crashed) and splitting its load to already finished machines. But if one key has a huge
fraction of the data, then that part cannot be split (e.g. see “the” in word count). Often this requires intelligent
algorithmic design – I covered some approaches in my Models of Computation for Massive Data class.

23.3 Examples
Well go through several classic MapReduce examples:

23.3.1 Word Count
Consider as input an enormous text corpus (for instance all of English Wikipedia) stored in out DFS. The
goal is to count how many times each word is used.

Map: For each word: w make key-value pair 〈w, 1〉

Reduce: For all words w have
〈w, v1〉, 〈w, v2〉, 〈w, v3〉

output
〈w,

∑
i

vi〉.

The combiner can optionally perform the same thing as the reducer, but just on the words from one block.
The reduce can still add the results. This helps enormously for instance when on many corpuses of data the

CS 6140 Data Mining; Spring 2014 Instructor: Jeff M. Phillips, University of Utah



word “the” occurs 7% of the time (which is a huge reducer if there are 100 or more machines). And text
already follows Zipf’s law and is heavy-tailed. Light-tailed distributions could be even worse.

23.3.2 Inverted Index
Again consider a text corpus (all pages of English Wikipedia). Build an index, so each word as a list of
pages it is in.

Map: For each word: w make key-value pair 〈w, p〉 where p is the page that is currently being processed.

Reduce: For all words w have
〈w, v1〉, 〈w, v2〉, 〈w, v3〉

output
〈w,

⋃
i

vi〉.

23.3.3 Phrases
Again consider a text corpus (all pages of English Wikipedia). Build an index, but now on k-grams of length
3, and only those that occur on exactly one page.

Map: For each 3-gram g (consecutive set of 3 words), make key-value pair 〈g, p〉 where p is the page that
is currently being processed.

Combine: For all shingle g have
〈g, p〉, 〈g, p〉, . . .

output (so only one copy)
〈g, p〉.

Reduce: For all shingle g have
〈g, v1〉, 〈g, v2〉, . . . 〈g, vk〉

output could be empty, or is a gram-page pair. Specifically, if k = 1, then ouput

〈w,
⋃
i

vi〉,

otherwise output nothing since it does not occur (by default) or occurs on more than one page.

CS 6140 Data Mining; Spring 2014 Instructor: Jeff M. Phillips, University of Utah


