
16 Approximate PCA

Recall that PCA is the process to find the most dominant directions in an (n × d) matrix A (or n points in
Rd). Typically n > d. We explored before using the SVD

[U, S, V ] = svd(A)

where U = [u1, . . . , un], S = diag(σ1, . . . , σd), and V = [v1, . . . , vd]. Then A = USV T and in particular
A =

∑d
i=1 σiuiv

T
i . To approximate A we just use the first k components to find Ak =

∑k
i=1 σiuiv

T
i =

UkSkV
T
k where Uk = [u1, . . . , uk], Sk = diag(σ1, . . . , σk), and Vk = [v1, . . . , vk]T . The the vectors vi

(starting with smaller indexes) provide the best subspace representation of A.
But, although SVD has been heavily optimized on data sets that fit in memory (via LAPACK, found in

Matlab, and just about every other language), it can sometimes be improved. Here we highlight two of these
ways:

• to provide better interpretability of each vi.

• to be more efficient on enormous scale, and in a stream.

The SVD takes O(min{nd2, d2n}) time to compute.

16.1 Row Sampling
The goal is to approximate A up to the accuracy of Ak. But in Ak the directions vi are linear combinations
of features.

• What is a linear combination of genes?

• What is a linear combination of typical grocery purchases?

Instead our goal is to choose V so that the columns of V are also columns of A.
For each row of aj ∈ A, set wj = ‖aj‖2. Then select t = (k/ε)2 · log(1/δ) rows of A, each proportional

to wj . Let the “stacking” of these columns be R.
These t rows will jointly act in place of V T

k . However since V was orthogonal, then the columns vi, vj ∈
Vk were orthogonal. This is not the case for R, we need to orthogonalize R. Let ΠR = RT (RRT )−1R
be the projection matrix for R, so that AR = AΠR describes the projection of A onto the subspace of the
directions spanned by R. Now

‖A−AΠR‖F ≤ ‖A−Ak‖F + ε‖A‖F

with probability at least 1− δ [2].

• Why did we not just choose the t rows of A with the largest wj values?
Some may point along the same “direction” and would be repetitive. This should remind you of the
choice to run k-means++ versus the Gonzalez algorithm for greedy point-assignment clustering.

• Why did we not factor out the directions we already picked?
We could, but this allows us to run this in a streaming setting. (See next approach)

1



• But ΠRA could be rank t, can we get it rank k � t?
Yes, you can take its best rank k approximation [ΠRA]k and about the same bounds hold, you may
need to increase t slightly.

• Can we get a better error bound?
Yes. First take SVD and then set weight wj = ‖ajΠVk

‖2 where ΠVk
projects a vector onto the first k

right singular vectors. Then the bounds [1] are

‖A−ΠRA‖F ≤ (1 + ε)‖A−Ak‖F .

But this requires us to first take the SVD, so its is harder to do in a stream.

• Can we also sample columns this way?
Yes. All tricks can be run on AT the same way (in fact most of the literature talks about sampling
columns instead of rows). And, both approaches can be combined. This is known as the CUR-
decomposition of A.

A significant downside of these row sampling approaches is that the (1/ε2) coefficient can be quite large
for a small error tolerance. If ε = 0.01, meaning 1% error, then this coefficient alone is 10,000. In practice,
the results may be better, but for guarantees, this may only work on very enormous matrices.

16.2 Frequent Directions
Another efficient solution is provided by using a Misra-Gries trick. It is called Frequent Directions [4].

We will consider a matrix A one row (one point aj) at a time. We will maintain a matrix B that is `× d,
that is it only has ` rows (directions). We maintain that one row is always empty (has all 0s) at the end of
each round (this will always be the last row B`).

We start with the first `−1 dimension aj ofA asB. Then on each new row, we put aj in the empty row of
B. We set [U, S, V ] = svd(B). Now examine S = diag(σ1, . . . , σ`), which is an `-square diagonal matrix.
If σ` = 0 (then aj is in the subspace of B), do nothing. Otherwise subtract δ = σ2` from each (squared)

entry in S, that is σ′i =
√
σ2i − δ and in general S′ = diag(

√
σ21 − δ,

√
σ22 − δ, . . . ,

√
σ2` − δ, 0).

Now we set B = S′V T . Notice, that since S′ only has non-zero elements in the first `− 1 entries on the
diagonal, then B is at most rank `− 1 and we can then treat V and B as if the `th row does not exist.

Algorithm 16.2.1 Frequent Directions
Set B all zeros (`× d) matrix.
for rows (i.e. points) aj ∈ A do

Set B` = aj
[U, S, V ] = svd(B)
Set δ = σ2` # the `th entry of S

Set S′ = diag
(√

σ21 − δ,
√
σ22 − δ, . . . ,

√
σ2` − δ, 0

)
.

Set B = S′V T # keeping only the first ` rows, that last one should be all 0s
return B

The result of Algorithm 16.2.1 is a matrix B such that for any (direction) unit vector x ∈ Rd

0 ≤ ‖Ax‖2 − ‖Bx‖2 ≤ ‖A− k‖2F /(`− k)

CS 6140 Data Mining; Spring 2014 Instructor: Jeff M. Phillips, University of Utah



and [3]

‖A−AΠBk
‖2F ≤

`

`− k
‖A−Ak‖2F ,

for any k < `, including when k = 0. So setting ` = 1/ε, then in any direction in Rd, the squared mass in
that direction is preserved up to ε‖A‖2F (that is, ε times the total squared mass). using the first bound. And
in the second bound if we set ` = dk/ε + ke then we have ‖A − AΠBk

‖2F ≤ (1 + ε)‖A − Ak‖2F . Recall

that ‖A‖F =
√∑

ai∈A ‖ai‖
2.

• Why does this work?
Just like with Misra-Greis [5], when something mass is deleted from one, counter it is deleted from
all ` counters, and none can be negative. So here when one direction is decreased its (squared) mass,
all ` directions (with non-zero squared mass) are decreased. So no direction can have more than 1/`
fraction of the total squared mass decreased from it.

Finally, since squared mass can be summed independently along any set of orthogonal directions, we
can subtract each of them without affecting others.

• Why do we use the svd?
Because we can choose any orthogonal basis, we find the one that has the smallest δ value to decrease
by. This is what the svd gives us.

• Did we need to use the svd? (its expensive, right)?
Well, we only need to run it on a matrix of size ` × d, so d`2 might not be too bad ... although
this is repeated n times. We can decrease the total runtime to O(nd`) by waiting until we have 2`
non-empty rows, and then shrinking to decrease to `− 1 non-empty rows again. This retains the same
error bounds, but only calls the svd about n/` times.

• What happened to U in the svd output?
The matrix U just related the main directions to each of the n points (rows) in A. But we don’t want
to keep around the space for this. In this application, we only care about the directions or subspace
that best represents the points; e.g. PCA only cares about the right singular vectors.

CS 6140 Data Mining; Spring 2014 Instructor: Jeff M. Phillips, University of Utah



CS 6140 Data Mining; Spring 2014 Instructor: Jeff M. Phillips, University of Utah



Bibliography

[1] Christos Boutsidis, Michael W Mahoney, and Petros Drineas. An improved approximation algorithm for
the column subset selection problem. In Proceedings of the twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 968–977. Society for Industrial and Applied Mathematics, 2009.

[2] Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms for finding low-rank
approximations. In Foundations of Computer Science, 1998. Proceedings. 39th Annual Symposium on.
IEEE, 1998.

[3] Mina Ghashami and Jeff M. Phillips. Relative errors for deterministic low-rank matrix approximations.
In ACM-SIAM 25th Symposium on Discrete Algorithms, pages 707–717, 2014.

[4] Edo Liberty. Simple and deterministic matrix sketching. In Proceedings 19th ACM Conference on
Knowledge Discovery and Data Mining, (arXiv:1206.0594 in June 2012), 2013.

[5] J. Misra and D. Gries. Finding repeated elements. Sc. Comp. Prog., 2:143–152, 1982.

5


