
15 Singular Value Decomposition

For any high-dimensional data analysis, one’s first thought should often be: can I use an SVD? The singular
value decomposition is an invaluable analysis tool for dealing with large high-dimensional data. In many
cases, data in high dimensions, most of the dimensions do not contribute to the structure of the data. But
filtering these takes some care since it may not be clear which ones are important, if the importance may
come from a combination of dimensions. The singular value decomposition can be viewed as a way of
finding these important dimensions, and thus the key relationships in the data.

On the other hand, the SVD is often viewed as a numerical linear algebra operation that is done on a
matrix. It decomposes a matrix down into three component matrices. These matrices have structure, being
orthogonal or diagonal.

The goal of this note is to bridge these views and in particular to provide geometric intuition for the SVD.
Sometimes this geometric interpretation of the SVD is known as PCA (Principal Component Analysis).

Data. We will focus on a dataset P ⊂ Rd where P is a set of n “points.” At the same time, we will think
of P as a n× d matrix. Each row corresponds to a point, and each column corresponds to a dimension.

Then the goal will be to find a projection µ : Rd → Rk, where k � d and in particular Rk ⊂ Rd, so that
we minimize ∑

p∈P
(p− µ(p))2.

The SVD will precisely provide us this answer!

15.1 The SVD Operator
Here we document what the following operation in matlab does:

[U, S, V ] = svd(P )

The backend of this (in almost any language) goes back to some very carefully optimized Fortran code as
part of the LAPACK library.

First of all, no information is lost since we can simply recover the original data: P = USV T .
But there is more structure lurking in these matrices. S = diag(σ1, σ2, . . . , σr) where r ≤ d where r is

the rank of P . That is, S is a diagonal matrix with only entries on the diagonal. These values are (generally)
output in non-increasing order so σ1 ≥ σ2 ≥ . . . ≥ sr ≥ 0. They are known as the singular values of P . S
has size (n× d).

Both U (size n× n) and V (size d× d) are orthogonal matrices. An orthogonal matrix is also a rotation
matrix (more on this later), that can also allow mirror flips. They have the following properties:

• each column ui has ‖ui‖ = 1

• each pair of columns ui, uj have 〈ui, uj〉 = 0

• Its transpose is its inverse UT = U−1, so UTU = I .

Moreover the columns (and rows) of U form a d-dimensional orthogonal basis (usually not the original
basis). That is, for any p ∈ Rd we can write

p =

t∑
i=1

aiui

1



for some scalar ai = 〈p, ui〉. This is the ith coordinate in the new basis.
This implies that for any x ∈ Rd that ‖Ux‖ = ‖x‖ (it can only rotate or flip).
Moreover the columns of V = [v1 v2 . . . vd] are known as the right singular vectors and the columns of

U = [u1 u2 . . . un] are known as the left singular vectors.

15.1.1 Example
Consider the set of n = 4 points in R2 {p1 = (4, 3), p2 = (1, 2), p3 = (−1,−3), p4 = (−4, 2)}. Note,
these are chosen so that average x- and average y-coordinate is 0; it is centered. We can equivalently write
this as a the matrix

P =


4 3
2 2
−1 −3
−5 −2

 .

Then [U, S, V ] = svd(P ) where

U =


−0.6122 0.0523 0.0642 0.7864
−0.3415 0.2026 0.8489 −0.3487
0.3130 −0.8070 0.4264 0.2625
0.6408 0.5522 0.3057 0.4371

 ,

S =


8.1655 0

0 2.3074
0 0
0 0

 ,

V =

(
−0.8142 −.5805
−0.5805 0.8142

)
.

We will continue to use this example as we explain the geometry.

CS 6140 Data Mining; Spring 2014 Instructor: Jeff M. Phillips, University of Utah



15.1.2 Geometry of the SVD
We will see how the matrix P transforms a circle in R2 to a two-dimensional ellipse the lives in R4. This
ellipse will represent the size and magnitude the principal components.

We will start with an arbitrary point x such that ‖x‖ = 1 (so it is on the unit circle), and see what happens
in b = Px. Specifically we will break down the process b = USV Tx by examining ξ = V Tx, then
η = Sξ = SV tx and then b = Uη = USV Tx.

Step 1 (ξ = V Tx): Since V T is orthogonal (and x ∈ R2) then it acts as a rotation. It puts x in the basis of
V T as a point ξ. Note that the orthogonal vectors v1 and v2 (of V = [v1, v2]) become the axis to describe ξ.

x1

x2

v1

v2

x

v1

v2

⇠

Step 2: (η = Sξ): Note that ξ = (ξ1, ξ2) is still on a circle since it still has ‖ξ‖ = 1. The S matrix is a
diagonal matrix, so it just scales the axis. Each ith axis is scaled according to σi. Specifically, η1 = σ1ξ1
and η2 = σ2ξ2, where ξ1 and ξ2 are coordinates in the basis along v1 and v2, respectively.

v1

v2⌘

Step 3: (b = Uη): We now apply another rotation. Notice that S had two rows that were all 0. This
effectively scales η along two axes it did not know it had. But it sets these values to 0. So η = (η1, η2, 0, 0) ∈
R4.

Now we again use that U is a rotation (with possible mirror flips), but for points in R4. Each axis now
represents the component along the direction of a point. Note that now ‖η‖ = ‖b‖ = ‖S‖ = ‖P‖.

Unfortunately, this is harder to draw, but it looks like step 1, but in higher dimensions.

15.1.3 Principal Component Analysis
So how do we get this subspace that we project onto?

The vectors V = [v1, v2, . . . , vd] are such that they describe the most important axis of the data in the
following sense. The first right singular vector v1 describes which direction has the most variance. The

CS 6140 Data Mining; Spring 2014 Instructor: Jeff M. Phillips, University of Utah



variance is precisely described by σ1. Then since v2, . . . , vd are each orthogonal to v1, this implies that v2
is the direction (after v1 has been factored out) that has the most variance.

So the k-dimensional subspace of Rd is defined by basis [v1, v2, . . . , vk], the first k-right singular vectors.
So how large should k be? The amount of squared “mass” captured by vk is σk. So if σk+1 is small, we

do not need to keep vk+1. It means there is little variation along that direction, and each other directions not
yet captured. Or use “elbow” technique where the difference between σk − σk+1 is large.

• In many statistical and numerical datasets, often σk decay quickly. Usually for k not too large sk+1 is
very close to 0.
• In many internet scale datasets (think Facebook graph), then typically σk decay slowly (they have

a “heavy tail”). Often
∑∞

j=k+1 ≥ 10%, even at the appropriate cut-off k. (This may (or may not)
indicate that PCA is the wrong approach to finding core structure.)

So what do we know:

• V does “bookkeeping” of moving original basis to new one,
• S stretches it accordingly (along new basis), and
• U describes results with respect to actual data.

So to get the projection of the points P in the new subspace as Rk we create Pk ∈ Rk as

Pk = UkSkV
T
k

where Uk = [u1, u2, . . . , uk], S = diag(σ1, σ2, . . . , σk) and V = [v1, v2, . . . , vk].
So the subspace is defined using just Vk. Then Sk describes the importance along each direction, and Uk

relates it to the actual points.

Relationship to eigen-decomposition. We can write

P TPV = (V SUT )(USV T )V = V S2

so vi are the eigenvectors of P TP . Similarly

PP TU = (USV T )(V SUT )U = US2

so ui are the eigenvectors of PP T . Thus also the squared singular values σ2i are eigenvalues of P TP and of
PP T .

CS 6140 Data Mining; Spring 2014 Instructor: Jeff M. Phillips, University of Utah


