
Asmt 3: Clustering
Turn in through Canvas by 5pm:

Wednesday, March 05
20 points

Overview
In this assignment you will explore clustering: hierarchical and point-assignment. You will also experiment
with high dimensional data.

You will use two data sets for this assignment:

• http://www.cs.utah.edu/˜jeffp/teaching/cs5140/A3/C1.txt
• http://www.cs.utah.edu/˜jeffp/teaching/cs5140/A3/C2.txt

These data sets each describe the location of 26 points, each on one line of the file. The first character is a
label (from the lower case letters a,b,c,d,e,. . .). Then separated by white space are two numbers, the x and
the y coordinate. We’ll use L2 distance to say which are close

d(a, b) =
√
(a.x− b.x)2 + (a.y − b.y)2.

The data sets are small enough that it may be possible to run the algorithms below by hand if you have less
programming experience. However, it may also be useful (or faster) to implement the algorithms.

You are also asked to prove things in this assignment (even outside the BONUS question). The questions
should be simple, and by playing with algebra you should be able to solve them. I suggest you work in
groups to discuss the problems, but recall, that you must write up your solutions by yourself. And remember
to make your proofs clear, they need to be verifiable to be graded as correct.

As usual, it is highly recommended that you use LaTeX for this assignment. If you do not, you may
lose points if your assignment is difficult to read or hard to follow. Find a sample form in this directory:
http://www.cs.utah.edu/˜jeffp/teaching/latex/

1 Hierarchical Clustering (4 points)
There are many variants of hierarchical clustering; here we explore 3. The key difference is how you measure
the distance d(S1, S2) between two clusters S1 and S2.

Single-Link: measures the shortest link d(S1, S2) = min
(s1,s2)∈S1×S2

‖s1 − s2‖2.

Complete-Link: measures the longest link d(S1, S2) = max
(s1,s2)∈S1×S2

‖s1 − s2‖2.

Mean-Link: measures the distances to the means. First compute a1 = 1
|S1|

∑
s∈S1

s and a2 = 1
|S2|

∑
s∈S2

s then
d(S1, S2) = ‖a1 − a2‖2 .

A (4 points): Run all hierarchical clustering variants on data set C1.txt until there are k = 3 clusters,
and report the results as sets.

Which variant did the best job, and which was the easiest to compute (think if the data was much larger)?
Explain your answers.
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2 Point Assignment Clustering (12 points)
Point assignment clustering works by assigning every point x ∈ X to the closest cluster centers C. Let
φC : X → C be this assignment map so that φC(x) = argminc∈C d(x, c). All points that map to the same
cluster center are in the same cluster.

Two good heuristics for these types of cluster are the Gonzalez (Algorithm 9.4.1) and k-Means++
(Algorithm 10.1.2) algorithms.

A: (4 points) Run Gonzalez and k-Means++ on data set C2.txt for k = 3. To avoid too much variation
in the results, choose c1 as the point a.

Report the centers and the subsets for Gonzalez. Report:

• the 3-center cost maxx∈X d(x, φC(x)) and

• the 3-means cost
∑

x∈X(d(x, φC(x)))2

For k-Means++, the algorithm is randomized, so you will need to report the variation in this algorithm.
Run it several trials (at least 20) and plot the cumulative density function of the 3-means cost. Also report
what fraction of the time the subsets are the same as the result from Gonzalez.

B: (4 points) Recall that Lloyd’s algorithm for k-means clustering starts with a set of k centers C and runs
as described in Algorithm 10.1.1.

• Run Lloyds Algorithm with C initially as {a,b,c}. Report the final subset and the 3-means cost.

• Run Lloyds Algorithm with C initially as the output of Gonzalez above. Report the final subset and
the 3-means cost.

• Run Lloyds Algorithm with C initially as the output of each run of k-Means++ above. Plot a cumu-
lative density function of the 3-means cost. Also report the fraction of the trials that the subsets are
the same as the input.

C: (4 points) Consider a set of points S ⊂ Rd and d the Euclidean distance. Prove that

arg min
p∈Rd

∑
x∈S

(d(x, p))2 =
1

|S|
∑
x∈S

x.

Here are some suggested steps to follow towards the proof (note there are also other valid ways to prove
this):

1. First prove the same results for S ∈ R1.

2. Expand each term (d(x, p))2 = (x− p)2 = x2 + p2 − 2xp.

3. Add the above terms together and take the first derivative.

4. Show the results for each dimension can be solved independently (use properties of edge lengths in a
right triangle).

3 Distances in High Dimensions (4 points)
We will explore a couple potentially unintuitive properties of high dimensional data.

CS 6140 Data Mining; Spring 2014 Instructor: Jeff M. Phillips, University of Utah



A: (2 points) We will explore what happens to the distribution of a Gaussian distributions in high-dimensions.
A d-dimensional uniform Gaussian distribution is defined:

G(x) =
1

(2π)d/2
e−‖x‖

2
2/2.

See Section L6.3.1 in the notes for more details on the.
Your task is to generated d-dimensional Gaussian random variables, and plot their L2 and L1 norms. For

each d = {1, 2, 5, 10, 50, 100} generate t = 100 Gaussian random variables {g1, . . . , gt}, and report their
average L2 norm

1

t

t∑
i=1

‖gi‖ =
1

t

t∑
i=1

√√√√ d∑
j=1

g2i,j

and average L1 norm
1

t

t∑
i=1

‖gi‖1 =
1

t

t∑
i=1

d∑
j=1

|gi,j |.

B: (2 points) We will again explore the difference between different Lp distances in high dimensions.
Generate uniform random variables y in [−1, 1]d, each coordinate is an independent random variable in the
range [−1, 1]. (i.e. a random u ∈ [0, 1] is transformed to x = 2u− 1.)

For dimensions d = {1, 2, 5, 10, 50, 100} estimate the probability that the random variable y has an L2

norm less than 1. For instance compute how many points x out of t = 100 random points in [−1, 1]d have
‖x‖2 < 1.

4 BONUS (3 points)
There are two interesting ways to characterize the 1-mean and 1-median of a set x. That for the points,

m2 = arg min
p∈Rd

∑
x∈X
‖x− p‖2

and
m1 = arg min

p∈Rd

∑
x∈X
‖x− p‖.

We will use 0 = (0, 0, . . . , 0); it is the d-dimensional vector of all 0s.

A: (1 point) Prove that m2 is the point such that∑
x∈X

(x− p) = 0.

Hint, use your analysis from question 2.C.

B: (2 point) Prove that m1 is the point such that∑
x∈X

(x− p)
‖x− p‖

= 0.
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