
9 Classification

This topic returns to prediction. Unlike linear regression where we were predicting a numeric value, in this
case we are predicting a class: winner or loser, yes or no, rich or poor, positive or negative. Ideas from
linear regression can be applied here, but we will instead overview a different, but still beautiful family of
techniques based on linear classification.

This is perhaps the central problem in data analysis. For instance, you may want to predict:

• will a sports team win a game?

• will a politician be elected?

• will someone like a movie?

• will someone click on an ad?

• will I get a job? (If you can build a good classifier, then probably yes!)

Each of these is typically solved by building a general purpose classifier (about sports or movies etc), then
applying it to the person in question.

9.1 Linear Classifiers
Our input here is a point set X ⊂ Rd, where each element xi ∈ X also has an associated label yi. And
yi ∈ {−1,+1}.

Like in regression, our goal is prediction and generalization. We assume each (xi, yi) ∼ µ; that is,
each data point pair, is drawn iid from some fixed but unknown distribution. Then our goal is a function
g : Rd → R, so that if yi = +1, then g(xi) ≥ 0 and if yi = −1, then g(xi) ≤ 0.

We will restrict that g is linear. For a data point x ∈ Rd, written x = (x(1), x(2), . . . , x(d)) we enforce that

g(x) = α0 + x(1)α1 + x(2)α2 + . . .+ x(d)αd = α0 +
d∑

j=1

x(j)αj ,

for some set of scalar parameters α = (α0, α1, α2, . . . , αd). Typically, different notation is used: we set
b = α0 and w = (w1, w2, . . . , wd) = (α1, α2, . . . , αd) ∈ Rd. Then we write

g(x) = b+ x(1)w1 + x(2)w2 + . . .+ x(d)wd = 〈w, x〉+ b.

We can now interpret (w, b) as defining a halfspace in Rd. Herew is the normal of that halfspace boundary
(the single direction orthogonal to it) and b is the distance from the origin 0 = (0, 0, . . . , 0) to the halfspace
boundary in the direction w/‖w‖. Because w is normal to the halfspace boundary, b is also distance from
the closest point on the halfspace boundary to the origin (in any direction).

We typically ultimately usew as a unit vector, but it is not important since this can be adjusted by changing
b. Let w, b be the desired halfspace with ‖w‖ = 1. Now assume we have another w′, b′ with ‖w′‖ = β 6= 1
and w = w′/‖w′‖, so they point in the same direction, and b′ set so that they define the same halfspace. This
implies b′ = b/β. So the normalization of w can simply be done post-hoc without changing any structure.

Recall, our goal is g(x) ≥ 0 if y = +1 and g(x) ≤ 0 if y = −1. So if x lies directly on the halfspace
then g(x) = 0.
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Example: Linear Separator in R2

Here we show a set X ∈ R2 of 13 points with 6 labeled + and 7 labeled −. A linear classifier
perfectly separates them. It is defined with a normal direction w (pointing towards the positive
points) and an offset b.

w

b

Using techniques we have already learned, we can immediately apply two approaches towards this prob-
lem.

Linear classification via linear regression. For each data points (xi, yi) ∈ Rd×R, we can immediately
represent xi as the value of d explanatory variables, and yi as the single dependent variable. Then we can
set up a n × (d + 1) matrix M , where the ith row is (1, xi); that is the first coordinate is 1, and the next d
coordinates come from the vector xi. Then with a y ∈ Rn vector, we can solve for

α = (MTM)−1MT y

we have a set of d+ 1 coefficients α = (α0, α1, . . . , αd) describing a linear function g : Rd → R defined

g(x) = 〈α, (1, x)〉.

Hence b = α0 and w = (α1, α2, . . . , αd). For x such that g(x) > 0, we predict y = +1 and for g(x) < 0,
we predict y = −1.

However, this approach is optimizing the wrong problem. It is minimizing how close our predictions
g(x) is to −1 or +1, by minimizing the sum of squared errors. But our goal is to minimize the number of
mispredicted values, not the numerical value.
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Example: Linear Regression for Classification
We show 6 positive points and 7 negative points in Rd mapped to Rd+1. All of the d-coordinates are
mapped to the x-axis. The last coordinate is mapped to the y-axis and is either +1 (a positive points)
or −1 (a negative points). Then the best linear regression fit is shown, and the points where it has
y-coordinate 0 defines the boundary of the halfspace. Note, despite there being a linear separator,
this method misclassifies two points because it is optimizing the wrong measure.

w

b
Rd

R

Linear classification via gradient descent. Since, the linear regression SSE cost function is not the
correct one, what is the correct one? We might define a cost function ∆

∆(g, (X, y)) =
n∑

i=1

(1− 1(sign(yi) = sign(g(xi)))

which uses the identity function 1 (defined 1(TRUE) = 1 and 1(FALSE) = 0) to represent the number of
misclassified points. This is what we would like to minimize.

Unfortunately, this function is discrete, so it does not have a useful (or well-defined) derivative. And, it
is also not convex. Thus, encoding g as a (d + 1)-dimensional parameter vector (b, w) = α and running
gradient descent is not feasible.

However, most classification algorithms run some variant of gradient descent. To do so we will use a
different cost function as a proxy for ∆, called a loss function. We explain this next.

9.1.1 Loss Functions
To use gradient descent for classifier learning, we will use a proxy for ∆ called a loss functions L. These
are sometimes implied to be convex, and their goal is to approximate ∆. And in most cases, they are
decomposable, so we can write

L(g, (X, y)) =

n∑

i=1

`i(g, (xi, yi))

=

n∑

i=1

`i(zi) where zi = yig(xi).

Note that the clever expression zi = yig(xi) handles when the function g(xi) correctly predicts the positive
or negative example in the same way. If yi = +1, and correctly g(xi) > 0, then zi > 0. On the other hand,
if yi = −1, and correctly g(xi) < 0, then also zi > 0. For instance, the desired cost function, ∆ is written

∆(z) =

{
0 if z ≥ 0

1 if z < 0.
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Most loss functions `i(z) which are convex proxies for ∆ mainly focus on how to deal with the case
zi < 0 (or zi < 1). The most common ones include:

• hinge loss: `i = max(0, 1− z)

• smoothed hinge loss: `i =





0 if z ≥ 1

(1− z)2/2 if 0 < z < 1
1
2 − z if z ≤ 0

• squared hinge loss: `i = max(0, 1− z)2

• logistic loss: `i = ln(1 + exp(−z))

z z z z z

`i `i
`i `i

�

hinge smoothed
hinge

squared
hinge

logistic

ReLU

The hinge loss is the closest convex function to ∆; in fact it strictly upper bounds ∆. However, it is
non-differentiable at the “hinge-point,” (at z = 1) so it takes some care to use it in gradient descent. The
smoothed hinge loss and squared hinge loss are approximations to this which are differentiable everywhere.
The squared hinge loss is quite sensitive to outliers (similar to SSE). The smoothed hinge loss (related to the
Huber loss) is a nice combination of these two loss functions.

The logistic loss can be seen as a continuous approximation to the ReLU (rectified linear unit) loss func-
tion, which is the hinge loss shifted to have the hinge point at z = 0. The logistic loss also has easy-to-take
derivatives (does not require case analysis) and is smooth everywhere. Minimizing this loss for classification
is called logistic regression.

9.1.2 Cross Validation and Regularization
Ultimately, in running gradient descent for classification, one typically defines the overall cost function
f also using a regularization term r(α). For instance r(α) = ‖α‖2 is easy to use (has nice derivatives)
and r(α) = ‖α‖1 (the L1 norm) induces sparsity (for reasons not covered in this class). In general, the
regularizer typically penalizes larger values of α, resulting in some bias, but less over-fitting of the data.

The regularizer r(α) is combined with a loss function L(gα, (X, y)) =
∑n

i=1 `i(gα, (xi, yi)) as

f(α) = L(gα, (X, y)) + ηr(α),

where η ∈ R is a regularization parameter that controls how drastically to regularize the solution.
Note that this function f(α) is still decomposable, so one can use batch, incremental, or most commonly

stochastic gradient descent.

Cross-validation. Backing up a bit, the true goal is not minimizing f or L, but predicting the class for
new data points. For this, we again assume all data is drawn iid from some fixed but unknown distribution.
To evaluate how well out results generalizes, we can use cross-validation (holding out some data from the
training, and calculating the expected error of ∆ on these help out “testing” data points).

We can also choose the regularization parameter η by choosing the one that results in the best generaliza-
tion on the test data after training using each on some training data.
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9.2 Perceptron Algorithm
Of the above algorithms, generic linear regression is not solving the correct problem, and gradient descent
methods do not really use any structure of the problem. In fact, we could have replaced the linear function
gα(x) = 〈α, (1, x)〉 with any function g (even non-linear ones) as long as we can take the gradient.

Now we will introduce the perceptron algorithm which explicitly uses the linear structure of the problem.
(Technically, it only uses the fact that there is an inner product – which we will exploit in generalizations.)

Simplifications: For simplicity, we will make several assumptions about the data. First we will assume
that the best linear classifier (w∗, b∗) defines a halfspace whose boundary passes through the origin. This
implies b∗ = 0, and we can ignore it. This is basically equivalent to (for data point (x′i, yi) ∈ Rd′ ×R using
xi = (1, x′i) ∈ Rd where d′ + 1 = d.

Second, we assume that for all data points (xi, yi) that ‖xi‖ ≤ 1 (e.g., all data point live in a unit ball).
This can be done by choosing the point xmax ∈ X with largest norm ‖xmax‖, and dividing all data points
by ‖xmax‖ so that point has norm 1, and all other points have smaller norms.

Finally, we assume that there exists a perfect linear classifier. One that classifies each data point to the
correct class. There are variants to deal with the cases without perfect classifiers, but which are beyond the
scope of this class.

The algorithm. Now to run the algorithm, we start with some normal direction w (initialized as any
positive point), and then add mis-classified points to w one at a time.

Algorithm 9.2.1 Perceptron(X)

Initialize w = yixi for any (xi, yi) ∈ (X, y)
repeat

For any (xi, yi) such that yi〈xi, w〉 < 0 (is mis-classified) : update w ← w + yixi
until (no mis-classified points or T steps)
return w ← w/‖w‖

Basically, if we find a mis-classified point (xi, yi) and yi = +1, then we set w = w + xi. This makes w
“point” more in the direction of xi, but also makes it longer. Having w more in the direction of w, tends to
make it have dot-product (with a normalized version of w) closer to 1.

Similar, if we find a mis-classified point (xi, yi) with yi = −1, the we set w = w − xi; this points the
negative of w more towards xi, and thus w more away from xi, and thus its dot product more likely to be
negative.

The margin. To understand why the perceptron works, we need to introduce the concept of a margin.
Given a classifier (w, b), the margin is

γ = min
(xi,yi)∈X

yi(〈w, xi〉+ b).

Its the minimum distance of any data point xi to the boundary of the halfspace. In this sense the optimal
classifier (or the maximum margin classifier) (w∗, b∗) is the one that maximizes the margin

(w∗, b∗) = arg max
(w,b)

min
(xi,yi)∈X

yi(〈w, xi〉+ b)

γ∗ = min
(xi,yi)∈X

yi(〈w∗, xi〉+ b∗).

A max-margin classifier, is one that not just classifies all points correctly, but does so with the most
“margin for error.” That is, if we perturbed any data point or the classifier itself, this is the classifier which
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can account for the most perturbation and still predict all points correctly. It also tends to generalize (in the
cross-validation sense) to new data better than other perfect classifiers.

Example: Margin of Linear Classifier
For a set X of 13 points in R2, and a linear classifier defined with (w, b). We illustrate the margin in
pink. The margin γ = min(xi,yi) yi(〈w, xi〉 + b). The margin is drawn with an↔ for each support
point.

w

b

The maximum margin classifier (w∗, b∗) for X ⊂ Rd can always be defined uniquely by d+ 1 points (at
least one negative, and at least one positive). These points S ⊂ X are such that for all (xi, yi) ∈ S

γ∗ = yi〈w∗, xi〉+ b.

These are known as the support points, since they “support” the margin strip around the classifier boundary.

Why perceptron works. We claim that after at most T = (1/γ∗)2 steps (where γ∗ is the margin of the
maximum margin classifier), then there can be no more mis-classified points.

To show this we will bound two terms as a function of t, the number of mistakes found: 〈w,w∗〉 and
‖w‖2 = 〈w,w〉, before we ultimately normalize w in the return step.

First we can argue that ‖w‖2 ≤ t, since each step increases ‖w‖2 by at most 1:

〈w + yixi, w + yixi〉 = 〈w,w〉+ (yi)
2〈xi, xi〉+ 2yi〈w, xi〉 ≤ 〈w,w〉+ 1 + 0.

This is true since if xi is mis-classified, then yi〈w, xi〉 is negative.
Second, we can argue that 〈w,w∗〉 ≥ tγ∗ since each step increases it by at least γ∗. Recall that ‖w∗‖ = 1

〈w + yixi, w
∗〉 = 〈w,w∗〉+ (yi)〈xi, w∗〉 ≥ 〈w,w∗〉+ γ∗.

The inequality follows from the margin of each point being at least γ∗ with respect to the max-margin
classifier w∗.

Combining these facts together we obtain

tγ∗ ≤ 〈w,w∗〉 ≤ 〈w, w

‖w‖〉 = ‖w‖ ≤
√
t.

Solving for t yields t ≤ (1/γ∗)2 as desired.
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9.3 Kernels
It turns out all we need to get any of the above machinery to work is a well-defined (generalized) inner-
product. For two vectors p = (p1, . . . , pd), q = (q1, . . . , qd) ∈ Rd, we have always used as the inner
product:

〈p, q〉 =
d∑

i=1

pi · qi.

However, we can define inner products more generally as a kernel K(p, q). For instance, we can use

• K(p, q) = exp(−‖p− q‖2/σ2) for the Gaussian kernel, with bandwidth σ,

• K(p, q) = exp(−‖p− q‖/σ) for the Laplace kernel, with bandwidth σ, and

• K(p, q) = (〈p, q〉+ c)r for the polynomial kernel of power r, with control parameter c > 0.

Then we define our classification function

g(x) = K(x,w) + b.

If g(x) > 0, we classify x as positive, and if g(x) < 0, we classify x as negative.
For gradient decent, again α = (α0, α1, . . . , αd) = (b, w). We just need to take the gradient for each term

of the loss function `i(zi) for zi = yig(xi) as before.
And for perceptron, we check yiK(xi, w) > 0 to see if (xi, yi) is mis-classified, and still simply add

w ← w + yixi as before.

Are these linear classifers? No. In fact, this is how you model various forms of non-linear classifiers.
The “decision boundary” is no longer described by the boundary of a halfspace. For the polynomial kernel,
the boundary must now be a polynomial surface of degree r. For the Gaussian and Laplace kernel it can be
even more complex; the σ parameter essentially bounds the curvature of the boundary.

9.4 kNN Classifiers
Now for something completely different. There are many ways to define a classifier, and we have just
touched on some of them. These include decision trees (which basically just ask a series of yes/no questions
and are very interpretable) to deep neural networks (which are more complex, far less interpretable, but can
achieve more accuracy). We will describe one more simple classifier.

The k-NN classifier (or k-nearest neighbors classifier) works as follows. Choose a scalar parameter
k (it will be far simpler to choose k as an odd number, say k = 5). Next define a majority function
maj : {−1,+1}k → {−1,+1}. For a set Y = (y1, y2, . . . , yk) ∈ {−1,+1}k it is defined

maj(Y ) =

{
+1 if more than k/2 elements of Y are +1

−1 if more than k/2 elements of Y are −1.

Then for a data set X where each element xi ∈ X has an associated label yi ∈ {−1,+1}, define a k-nearest
neighbor function φX,k(z) that returns the k points in X which are closest to a query point z. Next let sign
report yi for any input point xi; for a set of inputs xi, it returns the set of values yi.

Finally, the k-NN classifier is
g(z) = maj(sign(φX,k(z))).

That is, it finds the k-nearest neighbors of query point z, and considers all of the class labels of those points,
and returns the majority vote of those labels.
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A query point z near many other positive points will almost surely return +1, and symmetrically for
negative points. This classifier works surprisingly well for many problems but relies on a good choice of
distance function to define φX,k.

Unfortunately, the model for the classifier depends on all of X . So it may take a long time to evaluate on
a large data set X . In contrast the functions g for all methods above take O(d) time to evaluate for points in
Rd, and thus are very efficient.

9.5 Neural Networks
A neural network is a learning algorithm intuitively based on how a neuron works in the brain. A neuron
takes in a set of inputs x = (x1, x2, . . . , xd) ∈ Rd, weights each input by a corresponding scalar w =
(w1, w2, . . . , wd) and “fires” a signal if the total weight

∑d
i=1wixi is greater than some threshold b.

x1

x2

xd wd

w1

> b?
{0, 1}

w2

w3

x3
dX

j=1

wi · xi � b = hx, wi � b > 0?

A neural network, is then just a network or graph of these neurons. Typically, these are arranged in layers.
In the first layer, there may be d input values x1, x2, . . . , xd. These may provide the input to t neurons (each
neuron might use fewer than all inputs). Each neuron produces an output y1, y2, . . . , yt. These outputs then
serve as the input to the second layer, and so on.

Once the connections are determined, then the goal is to learn the weights on each neuron so that for a
given input, a final neuron fires if the input satisfies some pattern (e.g., the input are pixels to a picture, and
it fires if the picture contains a car). This is theorized to be “loosely” how the human brain works.

Given a data set X with labeled data points (x, y) ∈ X (with x ∈ Rd and y ∈ {−1,+1}), we already
know how to train a single neuron so for input x it tends to fire if y = 1 and not fire if y = −1. It is just
a linear classifier. So, we can use the perceptron algorithm, or gradient descent with a well-chosen loss
function!

However, for neural networks to attain more power than simple linear classifiers, they need to be at least
two layers. Many amazing advances have come from so-called “deep neural networks” or ”deep learning”
or ”deep nets” which are neural networks with many layers (say 20 or more). For these networks, the
perceptron algorithm no longer works since it does not properly propagate across layers. However, a version
of gradient descent called back-propagation can be used. Getting deep nets to work can be quite finicky.
Their optimization function is not convex, and without various training tricks, it can be very difficult to find
a good global set of weights. (The full details of this approach is well beyond the scope of this class.)
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