
8 Clustering

This topic will focus on automatically grouping data points into subsets of similar points. There are numer-
ous ways to define this problem, and most of them are quite messy. And many techniques for clustering
actually lack a mathematical formulation. We will focus on what is probably the cleanest and most used
formulation: k-means clustering. But, for background, we will begin with a mathematical detour in Voronoi
diagrams.

8.1 Voronoi Diagrams
Consider a set S = {s1, s2, . . . , sk} ⊂ Rd of sites. We would like to understand how these points carve up
the space Rd.

We can think of this more formally as the post office problem. Let these sites define the locations of a
post office. For all points in Rd (e.g., a point on the map for points in R2), we would like to assign it to the
closest post office. For a fixed point, we can just check the distance to each post office:

φS(x) = arg min
si∈S
‖x− si‖.

However, this may be slow (naively take O(k) time for each point x), and does not provide a general
representation or understanding for all points. The “correct” solution to this problem is the Voronoi diagram.

The Voronoi diagram decomposes Rd into k regions (a Voronoi cell), one for each site. The region for
site si is defined.

Ri = {x ∈ Rd | φS(x) = si}
If we have these regions nicely defined, this solves the post office problem. For any point x, we just need
to determine which region it lies in (for instance in R2, once we have defined these regions, through an
extension of binary search, we can locate the region containing any x ∈ R2 in only O(log k) time). But
what do these regions look like, and what properties do they have.

Voronoi edges and vertices. We will start our discussion in R2. Further, we will assume that the sites S
are in general position: in this setting, it means that no set of three points lie on a common line, and that no
set of four points lie on a common circle.

The boundary between two regions Ri and Rj , called a Voronoi edge, is a line or line segment. This edge
ei,j is defined

ei,j = {x ∈ R2 | ‖x− si‖ = ‖x− sj‖ ≤ ‖x− s`‖ for all ` 6= i, j}
as the set of all points equal distance to si and sj , and not closer to any other point s`.

Why is this set a line segment? If we only have two points in S, then it is the bisector between them. Draw
a circle centered at any point x on this bisector, and if it intersects one of si or sj , it will also intersect the
other. This is true since we can decompose the squared distance from x to si along orthogonal components:
along the edge, and perpendicular to the edge from si to πei,j (si).

Similarly, a Voronoi vertex vi,j,` is a point where three sites si, sj , and s` are all equidistance, and no
other points are closer:

vi,j,k = {x ∈ R2 | ‖x− si‖ = ‖x− sj‖ = ‖x = s`‖ ≤ ‖x− sk‖ for all k 6= i, j, `}.

This vertex is the intersection (and end point) of three Voronoi edges ei,i, ei,`, and ej,`. Think of sliding a
point x along an edge ei,j and maintaining the circle centered at x and touching si and sj . When this circle
grows to where it also touches s`, then ei,j stops.
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Example: Voronoi Diagram
See the following example with k = 6 sites in R2. Notice the following properties: edges may be
unbounded, and the same with regions. The circle centered at v1,2,3 passes through s1, s2, and s3.
Also, Voronoi cell R3 has 5 = k − 1 vertices and edges.
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Size complexity. So how complicated can these Voronoi diagrams get? A single Voronoi cell can have
k−1 vertices and edges. So can the entire complex be of sizeO(k2) (each of k regions requiring complexity
O(k))? No. The Voronoi vertices and edges describe a planar graph. Some cool results from graph theory
says that planar graphs have asymptotically the same number of edges, faces, and vertices. Euler’s Formula
for a planar graph with n vertices, m edges, and k faces is that k + n −m = 2. And Kuratowski’s criteria
says for n ≥ 3, then m ≤ 3n − 6. Hence, k ≤ 2n − 4 for n ≥ 3. The duality construction to Delauney
triangulations (discussed below) will complete the argument. Since there are k faces (the k Voronoi cells,
one for each site), then there are also O(k) edges and O(k) vertices. In particular, there will be precisely
2n− 5 vertices and 3k − 6 edges.

However, this does not hold in R3. In particular, for R3 and R4, the complexity (number of cells, vertices,
edges, faces, etc) is O(k2). This means, there could be roughly as many edges as their are pairs of vertices!

But it can get much worse. In Rd (for general d) then the complexity is O(kdd/2e). This is a lot. Hence,
this structure is impractical to construct in high dimensions.

: The curse of dimensionality! ooooh

Moreover, since this structure is explicitly tied to the post office problem, and the nearest neighbor func-
tion φS , it indicates that (a) in R2 this function is nicely behaved, but (b) in high dimensions, it is quite
complicated.

8.1.1 Delaunay Triangulation
A fascinating aspect of the Voronoi diagram is that it can be converted into a very special graph where the
sites S are vertices, one called the Delaunay triangulation. This is the dual of the Voronoi diagram.

• Each face Ri of the Voronoi diagram maps to a vertex si in the Delaunay triangulation.
• Each vertex vi,j,` in the Voronoi diagram maps to a triangular face fi,j,` in the Delaunay triangulation.
• Each edge ei,j in the Voronoi diagram maps to an edge ēi,j in the Delaunay triangulation.
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Example: Delaunay Triangulation
See the following example with 6 sites in R2. Notice that every edge, face, and vertex in the Delau-
nay triangulation corresponds to a edge, vertex, and face in the Voronoi diagram. Interestingly, the
associated edges may not intersection; see e2,6 and ē2,6.
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Because of the duality between the Voronoi diagram and the Delaunay triangulation, their complexities
are the same. That means the Voronoi diagram is of size O(k) for k sites in R2, but more generally is of size
O(kdd/2e) in Rd.

The existence of of the Delaunay triangulation shows that there always exist a triangulation: A graph with
vertices of a given set of points S ⊂ R2 so that all edges are straightline segments between the vertices,
and each face is a triangle. In fact, there are many possible triangulations: one can always simply construct
some triangulation greedily, draw any possible edges that does not cross other edges until no more can be
drawn.

The Delaunay triangulation, however, is quite special. This is the triangulation that maximizes the small-
est angle over all triangles; for meshing applications in graphics and simulation, skinny triangles are very
hard to deal with, so this is very useful.

In circle property. Another cool way to define the Delaunay triangulation is through the in circle property.
For any three points, the smallest enclosing ball either has all three points on the boundary, or has two points
on the boundary and they are antipodal to each other. Any circle with two points antipodal on the boundary
si and sj , and contains no other points, then the edge ei,j is in the Delaunay triangulation. This is a subset
of the Delaunay triangulation called the Gabriel graph.

Any circle with three points on its boundary si, sj , and s`, and no points in its interior, then the face fi,j,`
is in the Delaunay triangulation, as well as its three edges ei,j , ei,` and ej,`. But does not imply those edges
satisfy the Gabriel property.

For instance, on a quick inspection, (in the example above) it may not be clear if edge e3,5 or e4,6 should
be in the Delaunay triangulation. Clearly it can not be both since they cross. But the ball with boundary
through s3, s4, and s6 would contain s5, so the face f3,4,6 cannot be in the Delaunay triangulation. On the
other hand the ball with boundary through s3, s6, and s5 does not contain s4 or any other points in S, so the
face f3,5,6 is in the Delaunay triangulation.
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8.1.2 Connection to Clustering
So what is the connection to clustering? Given a large set X ⊂ Rd of size n, we would like to find a set of k
sites S (post office locations) so that each point x ∈ X is near some post office. This is a proxy problem. So
given a set of sites S, determining for each x ∈ X which site is closest is exactly determined by the Voronoi
diagram.

8.2 k-Means Clustering
Probably the most famous clustering formulation is k-means. The term “k-means” refers to a problem
formulation, not an algorithm. There are many algorithms with aim of solving the k-means problem formu-
lation, exactly or approximately. We will mainly focus on the most common: Lloyd’s algorithm. Unfortu-
nately, it is common in the literature to see “the k-means algorithm,” this typically should be replaced with
Lloyd’s algorithm.
k-Means is in the family of assignment-based clustering. Each cluster is represented by a single point,

to which all other points in the cluster are “assigned.” The input is a data set X , and the output is a set of
centers S = {s1, s2, . . . , sk}. This implicitly defines a set of clusters where φS(x) = arg mins∈S ‖x − s‖
(the same as in the post office problem). Then the k-means clustering problem is to find the set S of k
clusters to minimize

cost(X,S) =
∑
x∈X
‖φS(x)− x‖2.

So we want every point assigned to the closest site, and want to minimize the sum of the squared distance
of all such assignments.

8.3 Lloyd’s Algorithm
When people think of the k-means problem, they usually think of the following algorithm. It is usually
attributed to Stuart P. Lloyd from a document in 1957, although it was not published until 1982.1

Algorithm 8.3.1 Lloyd’s Algorithm for k-Means Clustering
Choose k points S ⊂ X arbitrarily?
repeat

for all x ∈ X: assign x to Xi for si = φS(x) the closest site s ∈ S to x
for all si ∈ S: set si = 1

|Xi|
∑

x∈Xi
x the average of Xi = {x ∈ X | φS(x) = si}

until (the set S is unchanged)

Convergence. If the main loop has R rounds, then this takes roughly Rnk steps (and can be made closer
to Rn log k with faster nearest neighbor search in some cases). But how large is R; that is, how many
iterations do we need?

First, we can argue that the number of steps is finite. This is true since the cost function cost(X,S) will
always decrease. To see this, writing it as a sum over S.

cost(X,S) =
∑
x∈X
‖φS(x)− x‖2 =

∑
si∈S

∑
x∈Xi

‖si − x‖2.

1Apparently, the IBM 650 computer Lloyd was using in 1957 did not have enough computational power to run the (very simple)
experiments he had planned. This was replaced by the IBM 701, but it did not have quite the same “quantization” functionality as
the IBM 650, and the work was forgotten. Lloyd was also worried about some issues regarding the k-means problem not having a
unique minimum.
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Then in each step of the repeat-until loop, thus must decrease. The first step holds since it moves each
x ∈ X to a subset Xi with the corresponding center si closer to (or the same distance to) x than before.
So for each x the term ‖x − si‖ is reduced (or the same). The second step holds since for each inner sum∑

x∈Xi
‖si−x‖2, the single point si which minimizes this cost is precisely the average ofXi. So reassigning

si as described also decreases the cost (or keeps it the same).
Importantly, if the cost decreases each step, then it cannot have the same set of centers S on two different

steps, since that would imply the assignment sets {Xi} would also be the same. Thus, in order for this to
happen, the cost would need to decrease after the first occurrence, and then increase to obtain the second
occurrence, which is not possible.

Since, there are finite ways each set of points can be assigned to different clusters, then, the algorithm
terminates in a finite number of steps.

... but in practice usually we may run for R = 10, or maybe R = 20 steps. Or check if the change in cost
function is below some sufficiently small threshold.

On clusterability: When data is easily clusterable, most clustering algorithms work quickly and
well. When is not easily clusterable, then no algorithm will find good clusters.

Sometimes there is a good k-means clustering, but it is not found by Lloyd’s algorithm. Then we can
choose new centers again (with randomness), and try again.

Initialization. The initial paper by Lloyd advocates to choose the initial partition ofX into disjoint subsets
X1, X2, . . . , Xk arbitrarily. However, some choices will not be very good. For instance, if we randomly
place each x ∈ X into some xi, then (by the central limit theorem) we expect all si = 1

|Xi|
∑

x∈Xi
x to all

be close to the mean of the full data set 1
|X|
∑

x∈X x.
A bit safer way to initialize the data is to choose a set S ⊂ X at random. Since each si is chosen separately

(not as an average of data points), there is no centering phenomenon. However, even with this initialization,
we may run Lloyd’s algorithm to completion, and find a sub-optimal solution (a local minimum!). Thus,
it is usually safer to randomly re-initialize the algorithm several times (say 3-5 times) and rerun Lloyd’s
algorithm for each. the probability all random restarts results in a local minimum is more rare.

A more principled way to choose an initial set S is to use an algorithm like Gonzalez (for k steps, iter-
atively chose the point x ∈ X furthest from all sites chosen so far), or k-means++ (for k steps, iteratively
choose a point at random proportional to the squared distance to its nearest already chosen site). These
are beyond the scope of this class, but offer much stronger error guarantees of various forms. But, for
k-means++, it is still suggested to try random restarts.

Number of clusters So what is the right value of k? Like with PCA, there is no perfect answer towards
choosing how many dimensions the subspace should be. When k is not given to you, typically, you would
run with many different values of k. Then create a plot of cost(S,X) as a function of k. This cost will
always decrease with larger k; but of course k = n is of no use. At some point, the cost will not decrease
much between values (this implies that probably two centers are used in the same grouping of data, so the
squared distance to either is similar). Then this is a good place to choose k.

8.3.1 Extensions to the k-Means Problem and Lloyd’s Algorithm
Like many algorithms in this class, Lloyd’s depends on the use of a SSE cost function. In particular, it works
because for X ∈ Rd, then

1

|X|
∑
x∈X

x = average(X) = arg min
s∈Rd

∑
x∈X
‖s− x‖2.
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There are not similar properties for other costs functions, or when X is not in Rd. For instance, one may
want to solve the k-medians problem where one just minimizes the sum of (non-squared) distances. In
particular, this has no closed form solution for X ∈ Rd for d > 1.

An alternative to the averaging step is to choose

si = arg min
s∈Xi

d(x, s)

where d(x, s) is an arbitrary measure (like non-squared distance) between x and s. That is, we choose an
s from the set Xi. This is particularly useful when X is in a non-Euclidean metric space where averaging
may not be well-defined. For the specific case where d(x, s) = ‖x − s‖ (for the k-median problem), then
this variant of the algorithm is called k-mediods.

Soft clustering. Sometimes it is not desirable to assign each point to exactly one cluster. Instead, we
may split a point between one or more clusters, assigning a fractional value to each. This is known as soft
clustering whereas the original formulation is known as hard clustering.

There are many ways to achieve a soft clustering. For instance, consider the following Voronoi diagram-
based approach called based on natural neighbor interpolation (NNI). Let V (S) be the Voronoi diagram
of the sites S (which decomposes Rd). Then construct V (S ∪ x) for a particular data point x; the Voronoi
diagram of the sites S with the addition of one point x. For the regionRx defined by the point x in V (S∪x),
overlay it on the original Voronoi diagram V (S). This regionRx will overlap with regionsRi in the original
Voronoi diagram; compute the volume vi for the overlap with each such region. Then the fractional weight
for x into each site si is defined wi(x) = vi/

∑n
i=1 vi.

We can plug any such step into Lloyd’s algorithm, and then recalculate si as the weighted average of all
points partially assigned to the ith cluster.

8.4 Mixture of Gaussians
The k-means formulation tends to define clusters of roughly equal size. The squared cost discourages points
far from any center. It also, does not adapt much to the density of individual centers.

An extension is to fit each cluster Xi with a Gaussian distribution G(µi,Σi), defined by a mean µi and a
covariance matrix Σi. Recall that the pdf of a d-dimensional Gaussian distribution is defined

fµ,Σ(x) =
1

(2π)d/2
1√
|Σ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
where |Σ| is the determinant of Σ. For instance, for d = 2, and the standard deviation in the x-direction of
X is σx, and in the y-direction is σy, and their correlation is ρ, then

Σ =

[
σ2
x ρσxσy

ρσxσy σ2
y

]
.

Now the goal is, given a parameter k, find a set of k pdfs F = {f1, f2, . . . , fk} where fi = fµi,Σi to
maximize ∏

x∈X
max
fi∈F

fi(x),

or equivalently to minimize ∑
x∈X

min
fi∈F
− log(fi(x)).
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For the special case where when we restrict that Σi = I (the identity matrix) for each mixture, then one can
check that the second formulation (the log-likelihood version) is equivalent to the k-means problem.

This hints that we can adapt Lloyds algorithm towards this problem as well. To replace the first step of
the inner loop, we assign each x ∈ X to the Gaussian which maximizes fi(x):

for all x ∈ X: assign x to Xi so i = arg max
i∈1...k

fi(x).

But for the second step, we need to replace a simple average with an estimation of the best fitting Gaussian
to a data set Xi. This is also simple. First, calculate the mean as µi = 1

|Xi|
∑

x∈Xi
x. Then calculate the

covariance matrix Σi of Xi as the sum of outer products

Σi =
∑
x∈Xi

(x− µi)(x− µi)T .

This can be interpreted as calling PCA. Calculating µi, and subtracting from each x ∈ Xi is the centering
step. Letting X̄i = {x ∈ µi | x ∈ Xi}, then Σi = V S2V T where [U, S, V ] = svd(X̄i).

8.4.1 Expectation-Maximization
The standard way to fit a mixture of Gaussians actually uses a soft-clustering.

Each point x ∈ X is given a weight wi = fi(x)/
∑

i fi(x) for its assignment to each cluster. Then the
mean and covariance matrix is estimated using weight averages.

Algorithm 8.4.1 EM Algorithm for Mixture of Gaussians
Choose k points S ⊂ X arbitrarily?
for all x ∈ X: set wi(x) for si = φS(x), and wi(x) = 0 otherwise
repeat

for i ∈ [1 . . . k] do
Calculate Wi =

∑
x∈X wi(x) the total weight for cluster i

Set µi = 1
Wi

∑
x∈X wi(x)x the weighted average

Set Σi = 1
Wi

∑
x∈X wi(x− µi)(x− µi)T the weighted covariance

for x ∈ X do
for all i ∈ [1 . . . k]: set wi(x) = fi(x)/

∑
i fi(x) partial assignments using fi = fµi,Σi

until (
∑

x∈X
∑k

i=1− log(wi(x) · fi(x)) has small change)

This procedure is the classic example of a framework called expectation-maximization. This is an alternate
optimization procedure, which alternates between maximizing the probability of some model (the partial
assignment step) and calculating the most likely model using expectation (the average, covariance estimating
step).

But this is a much more general framework. It is particularly useful in situations (like this one) where the
true optimization criteria is messy and complex, often non-convex; but it can be broken into two or more
steps where each step can be solved with a (near) closed form. Or if there is no closed form, but each part is
individually convex, the gradient descent can be invoked.

8.5 Mean Shift Clustering
Now for something completely different. Clustering is a very very broad field with no settled upon approach.
To demonstrate this, we will quickly review an algorithm called mean shift clustering. This algorithm shifts
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each data point individually to its weighted center of mass. It terminates when all points converge to isolated
sets.

First begin with a bivariate kernel function K : X ×X → R such as the (unnormalized) Gaussian kernel

K(x, p) = exp(−‖x− p‖2/σ2)

for some given bandwidth parameter σ. The weighted center of mass around each point p ∈ X is then
defined as

µ(p) =

∑
x∈X K(x, p)x∑
x∈X K(x, p)

.

The algorithm just shifts each point to its center of mass: p← µ(p).

Algorithm 8.5.1 Mean Shift
repeat

for all p ∈ X: calculate µ(p) =
∑

x∈X K(x,p)x∑
x∈X K(x,p) .

for all p ∈ X: set p← µ(p).
until (the average change ‖p− µ(p)‖ is small)

This algorithm does not require a parameter k. However, it has other parameters, most notably the choice
of kernel K and its bandwidth σ. With the Gaussian kernel (since it has infinite support, K(x, p) > 0
for all x, p), it will only stop when all x are at the same point. Thus the termination condition is also
important. Alternatively, a different kernel with bounded support may terminate automatically (without a
specific condition); for this reason (and for speed) truncated Gaussians are often used.

This algorithm not only clusters the data, but also is a key technique for de-noising data. This is a process
that not just removes noise (as often thought of as outliers), but attempts to return point to where they should
have been before being perturbed by noise – similar to mapping a point to its cluster center.
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