
7 Principal Component Analysis

This topic will build a series of techniques to deal with high-dimensional data. Unlike regression problems,
our goal is not to predict a value (the y-coordinate), it is to understand the “shape” of the data, for instance a
low-dimensional representation that captures most of meaning of the high-dimensional data. This is some-
times referred to as unsupervised learning (as opposed to regression and classification, where the data has
labels, known as supervised learning). Like most unsupervised settings, it can be a lot of fun, but its easy to
get yourself into trouble if you are not careful.

We will cover many interconnected tools, including the singular value decomposition (SVD), eigenvectors
and eigenvalues, the power method, principal component analysis, and multidimensional scaling.

7.1 Data Matrices
We will start with data in a matrix A ∈ Rn×d, and will call upon linear algebra to rescue us. It is useful to
think of each row ai of A as a data point in Rd, so there are n data points. Each dimension j ∈ 1, 2, . . . , d
corresponds with an attribute of the data points.

Example: Data Matrices
There are many situations where data matrices arise.

• Consider a set of n weather stations reporting temperature over d points in time. Then each
row ai corresponds to a single weather station, and each coordinate Ai,j of that row is the
temperature at station i at time j.

• In movie ratings, we may consider n users who have rated each of dmovies on a score of 1−5.
Then each row ai represents a user, and the jth entry of that user is the score given to the j
movie.

• Consider the price of a stock measured over time (say the closing price each day). Many
time-series models consider some number of days (d days, for instance 25 days) to capture the
pattern of the stock at any given time. So for a given closing day, we consider the d previous
days. If we have data on the stock for 4 years (about 1000 days the stock market is open), then
we can create a d-dimensional data points (the previous d = 25 days) for each day (except the
first 25 or so). The data matrix is then comprised of n data points ai, where each corresponds
to the closing day, and the previous d days. The jth entry is the value on (j − 1) days before
the closing day i.

• Finally consider a series of pictures of a shape (say the Utah teapot). The camera position is
fixed as is the background, but we vary two things: the rotation of the teapot, and the amount
of light. Here each pictures is a set of say d pixels (say 10,000 if it is 100× 100), and there are
n pictures. Each picture is a row of length d, and each pixel corresponds to a column of the
matrix. Similar, but more complicated scenarios frequently occur with pictures of a persons
face, or 3d-imaging of an organ.

In each of these scenarios, there are many (n) data points, each with d attributes. The following will be
very important:

• all coordinates have the same units!

1

If this “same units” property does not hold, then when we measure a distance between data points in Rd,
usually using the L2-norm, then the distance is nonsensical.

The next goal is to uncover a pattern, or a model M . In this case, the model will be a low-dimensional
subspace F . It will represent a k-dimensional space, where k << d. For instance in the example with
images, there are only two parameters which are changing (rotation, and lighting), so despite having d =
10,000 dimensions of data, 2 should be enough to represent everything.

7.1.1 Projections
Different than in linear regression this family of techniques will measure error as a projection from ai ∈ Rd

to the closest point πF (ai) on F . To define this we will use linear algebra.
First recall, that given a unit vector u ∈ Rd and any data point p ∈ Rd, then the dot product

〈u, p〉

is the norm of p projected onto the line through u. If we multiply this scalar by u then

πu(p) = 〈u, p〉u,

and it results in the point on the line through u that is closest to data point p. This is a projection of p onto u.
To understand this for a subspace F , we will need to define a basis. For now we will assume that F

contains the origin (0, 0, 0, . . . , 0) (as did the line through u). Then if F is k-dimensional, then this means
there is a k-dimensional basis UF = {u1, u2, . . . , uk} so that

• For each ui ∈ UF we have ‖ui‖ = 1, that is ui is a unit vector.

• For each pair ui, uj ∈ UF we have 〈ui, uj〉 = 0; the pairs are orthogonal.

• For any point x ∈ F we can write x =
∑k

i=1 αiui; in particular αi = 〈x, ui〉.

Given such a basis, then the projection on to F of a point p ∈ Rd is simply

πF (p) =
k∑

i=1

〈ui, p〉ui.

Thus if p happens to be exactly in F , then this recovers p exactly.
The other powerful part of the basis UF is the it defines a new coordinate system. Instead of using the d

original coordinates, we can use new coordinates (α1(p), α2(p), . . . , αk(p)) where αi(p) = 〈ui, p〉. To be
clear πF (p) is still in Rd, but there is a k-dimensional representation if we restrict to F .

WhenF is d-dimensional, this operation can still be interesting. The basis we chooseUF = {u1, u2, . . . , ud}
could be the same as the original coordinate axis, that is we could have ui = ei = (0, 0, . . . , 0, 1, 0, . . . , 0)
where only the ith coordinate is 1. But if it is another basis, then this acts as a rotation (with possibility of
also a mirror flip). The first coordinate is rotated to be along u1; the second along u2; and so on. In πF (p),
the point p does not change, just its representation.

7.1.2 SSE Goal
As usual our goal will be to minimize the sum of squared errors. In this case we define this as

SSE(A,F) =
∑
ai∈A
‖ai − πF (ai)‖2,

CS 4964 Math for Data; Fall 2016 Instructor: Jeff M. Phillips, University of Utah

and our desired k-dimensional subspace F is

F ∗ = arg min
F

SSE(A,F)

As compared to linear regression, this is much less a “proxy goal” where the true goal was prediction. Now
we have no labels (the yi values), so we simply try to fit a model through all of the data.

How do we solve for this?

• Linear regression does not work, its cost function is different.

• It is not obvious how to use gradient descent. The restriction that each ui ∈ UF is a unit vector puts
in a constraint, in fact a non-convex one. There are ways to deal with this, but we have not discussed
these yet.

• ... linear algebra will come back to the rescue, now in the form of the SVD.

7.2 Singular Value Decomposition
A really powerful and useful linear algebra operation is called the singular value decomposition. It extracts
an enormous amount of information about a matrix A. This section will define it and discuss many of its
uses. Then we will describe one algorithm how to construct it. But in general, one simply calls the procedure
in your favorite programming language and it calls the same highly-optimized back-end from the Fortran
LAPACK library.

from scipy import linalg as LA
U, s, Vt = LA.svd(A)

The SVD takes in a matrix A ∈ Rn×d and outputs three matrices U ∈ Rn×n, S ∈ Rn×d and V ∈ Rd×d,
so that A = USV T .

[U, S, V] = svd(A)

=A U S
VT

The structure that lurks beneath. The matrix S only has non-zero elements along its diagonal. So
Si,j = 0 if i 6= j. The remaining values σ1 = S1,1, σ2 = S2,2, . . ., σr = Sr,r are known as the singular
values. They have the property that

σ1 ≥ σ2 ≥ . . . σr ≥ 0

where r ≤ min{n, d} is the rank of the matrix A. So the number of non-zero singular values reports the
rank (this is a numerical way of computing the rank or a matrix).

The matrices U and V are orthogonal. Thus, their columns are all unit vectors and orthogonal to each
other (within each matrix). The columns of U , written u1, u2, . . . , ud, are called the left singular vectors;
and the columns of V , written v1, v2, . . . , vn, are called the right singular vectors.

CS 4964 Math for Data; Fall 2016 Instructor: Jeff M. Phillips, University of Utah

This means for any vector x ∈ Rd, the columns of V (the right singular vectors) provide a basis. That is,
we can write x =

∑d
i=1 αivi for αi = 〈x, vi〉. Similarly for any vector y ∈ Rn, the columns of U (the left

singular vectors) provide a basis. This also implies that ‖x‖ = ‖V Tx‖ and ‖y‖ = ‖yU‖.

=A U

S VT

one data point

left singular vector

right singular vector

singular value
importance of singular vectors
decreasing rank order: �j � �j+1

important directions (vj by �j)
orthogonal: creates basis

maps contribution of data points
to singular values

v1

v2

x

kAxk

Tracing the path of a vector. To illustrate what this decomposition demonstrates, a useful exercise is to
trace what happens to a vector x ∈ Rd as it is left-multiplied by A, that is Ax = USV Tx.

First V Tx produces a new vector ξ ∈ Rd. It essentially changes no information, just changes the basis to
that described by the right singular values. For instance the new i coordinate ξi = 〈vi, x〉.

Next η ∈ Rn is the result of SV Tx = Sξ. It scales ξ by the singular values of S. Note that if d < n (the
case we will focus on), then the last n − d coordinates of η are 0. In fact, for j > r (where r = rank(A))
then ηj = 0. For j ≤ r, then the vector η is stretched longer in the first coordinates since these have larger
values.

The final result is a vector y ∈ Rn, the result of Ax = USV Tx = Uη. This again just changes the basis
of η so that it aligns with the left singular vectors. In the setting n > d, the last n − d left singular vectors
are meaningless since the corresponding entries in η are 0.

Working backwards ... this final U matrix can be thought of mapping the effect of η onto each of the data
points ofA. The η vector, in turn, can be thought of as scaling by the content of the data matrixA (the U and
V T matrices contain no scaling information). And the ξ vector arises via the special rotation matrix V T that
puts the starting point x into the right basis to do the scaling (from the original d-dimensional coordinates
to one that suits the data better).

CS 4964 Math for Data; Fall 2016 Instructor: Jeff M. Phillips, University of Utah

Example: Tracing through the SVD
Consider a matrix

A =


4 3
2 2
−1 −3
−5 −2

 ,

and its SVD [U, S, V] = svd(A):

U =


−0.6122 0.0523 0.0642 0.7864
−0.3415 0.2026 0.8489 −0.3487
0.3130 −0.8070 0.4264 0.2625
0.6408 0.5522 0.3057 0.4371

 , S =


8.1655 0

0 2.3074
0 0
0 0

 , V =

(
−0.8142 −.5805
−0.5805 0.8142

)
.

Now consider a vector x = (0.243, 0.97) (scaled very slightly so it is a unit vector, ‖x‖ = 1).
Multiplying by V T rotates (and flips) x to ξ = V Tx; still ‖ξ‖ = 1

x1

x2

v1

v2

x

v1

v2

⇠

Next multiplying by S scales ξ to η = Sξ. Notice there are an imaginary third and fourth coordinates
now; they are both coming out of the page! Don’t worry, they won’t poke you since their magnitude
is 0.

v1

v2⌘

Finally, y = Uη = Ax is again another rotation of η in this four dimensional space.

CS 4964 Math for Data; Fall 2016 Instructor: Jeff M. Phillips, University of Utah

import scipy as sp
import numpy as np
from scipy import linalg as LA

A = np.array([[4.0,3.0], [2.0,2.0], [-1.0,-3.0], [-5.0,-2.0]])

U, s, Vt = LA.svd(A, full_matrices=False)

print U
#[[-0.61215255 -0.05228813]
[-0.34162337 -0.2025832]
[0.31300005 0.80704816]
[0.64077586 -0.55217683]]
print s
#[8.16552039 2.30743942]
print Vt
#[[-0.81424526 -0.58052102]
[0.58052102 -0.81424526]]

x = np.array([0.243,0.97])
x = x/LA.norm(x)

xi = Vt.dot(x)
print xi
#[-0.7609864 -0.64876784]

S = LA.diagsvd(s,2,2)
eta = S.dot(xi)
print eta
#[-6.21384993 -1.49699248]

y = U.dot(eta)
print y
#[3.88209899 2.42606187 -3.1530804 -3.15508046]

print A.dot(x)
#[3.88209899 2.42606187 -3.1530804 -3.15508046]

7.2.1 Best Rank-k Approximation
So how does this help solve the initial problem of finding F ∗, which minimized the SSE? The singular
values hold the key.

It turns out that there is a unique singular value decomposition, up to ties in the singular values. This
means, there is exactly one (up to singular value ties) set of right singular values which rotate into a basis
so that ‖Ax‖ = ‖SV Tx‖ for all x ∈ Rd (recall that U is orthogonal, so it does not change the norm,
‖Uη‖ = ‖η‖).

CS 4964 Math for Data; Fall 2016 Instructor: Jeff M. Phillips, University of Utah

Next we realize that the singular values come in sorted order σ1 ≥ σ2 ≥ . . . ≥ σr. In fact, they are
defined so that we choose v1 so it maximizes ‖Av1‖, then we find the next singular vector v2 which is
orthogonal to v1 and maximizes ‖Av2‖, and so on. Then σi = ‖Avi‖.

If we define F with the basis UF = {v1, v2, . . . , vk}, then

‖x− πF (x)‖2 =

∥∥∥∥∥
d∑

i=1

vi〈x, vi〉 −
k∑

i=1

vi〈x, vi〉
∥∥∥∥∥
2

=
d∑

i=k+1

〈x, vi〉2.

so the projection error is that part of x in the last (d− k) right singular vectors.
But we are not trying to directly predict new data here (like in regression). Rather, we are trying to

approximate the data we have. We want to minimize
∑

i ‖ai − πF (ai)‖2. But for any unit vector u, we
recall now that

‖Au‖2 =
n∑

i=1

〈ai, u〉.

Thus the projection error can be measured with a set of orthonormal vectors w1, w2, . . . , wd−k which are
each orthogonal to F , as

∑n−k
j=1 ‖Awj‖2. When defining F as the first k right singular values, then these

orthogonal vectors are the remaining (n− k) right singular vectors, so the projection error is

n∑
i=1

‖ai − πF (ai)‖2 =
d∑

j=k+1

‖Avj‖2 =
d∑

j=k+1

σ2j .

And thus by how the right singular vectors are defined, this expression is minimized when F is defined as
the span of the first k singular values.

Best rank-k approximation. A similar goal is to find the best rank-k approximation ofA. That is a matrix
Ak ∈ Rn×d so that rank(Ak) = k and it minimizes both

‖A−Ak‖2 and ‖A−Ak‖F .

Note that ‖A−Ak‖2 = σk+1 and ‖A−Ak‖2F =
∑d

j=k+1 σ
2
j .

Remarkably, this Ak matrix also comes from the SVD. If we set Sk as the matrix S in the decomposition
so that all but the first k singular values are 0, then it has rank k. Hence Ak = USkV

T also has rank k and
is our solution. But we can notice that when we set most of Sk to 0, then the last (d− k) columns of V are
meaningless since they are only multiplied by 0s in USkV T , so we can also set those to all 0s, or remove
them entirely (along with the last (d− k) columns of Sk). Similar we can make 0 or remove the last (n− k)
columns of U . These matrices are referred to as Vk and Uk respectively, and also Ak = UkSkV

T
k .

=A U

S VTkk

kk

CS 4964 Math for Data; Fall 2016 Instructor: Jeff M. Phillips, University of Utah

7.3 Eigenvalues and Eigenvectors
A related matrix decomposition to SVD is the eigendecomposition. This is only defined for a square matrix
B ∈ Rn×n.

An eigenvector of B is a vector v such that there is some scalar λ that

Bv = λv.

That is, multiplying B by v results in a scaled version of v. The associated value λ is called the eigenvalue.
As a convention, we typically normalize v so ‖v‖ = 1.

In general, a square matrix B ∈ Rn×n may have up to n eigenvectors (a matrix V ∈ Rn×n) and values (a
vector l ∈ Rn). Some of the eigenvalues may be complex numbers (even when all of its entries are real!).

from scipy import linalg as LA
l, V = LA.eig(B)

For this reason, we will focus on positive semidefinite matrices. A positive definite matrix B ∈ Rn×n

is a symmetric matrix with all positive eigenvalues. Another characterization is for every vector x ∈ Rn

then xTBx is positive. A positive semidefinite matrix B ∈ Rn×n may have some eigenvalues at 0 and are
otherwise positive; equivalently for any vector x ∈ Rn, then xTBx may be zero or positive.

How do we get positive semi-definite matrices? Lets start with a data matrix A ∈ Rn×d. Then we can
construct two positive semidefinite matrices

BR = ATA and BL = AAT .

Matrix BR is d × d and BL is n × n. If the rank of A is d, then BR is positive definite. If the rank of A is
n, then BL is positive definite.

Eigenvectors and eigenvalues relation to SVD. Next consider the SVD ofA so that [U, S, V] = svd(A).
Then we can write

BRV = ATAV = (V SUT)(USV T)V = V S2.

Note that the last step follows because for orthogonal matrices U and V , then UTU = I and V TV = I ,
where I is the identity matrix, which has no effect. The matrix S is a diagonal square1 matrix S =
diag(σ1, σ2, . . . , σd). Then S2 = SS (the product of S with S) is again diagonal with entries S2 =
diag(σ21, σ

2
2, . . . , σ

2
d).

Now consider a single column vi of V (which is the ith right singular vector of A). Then extracting this
column’s role in the linear system BRV = V S2 we obtain

BRvi = viσ
2
i .

This means that ith right singular vector of A is an eigenvector (in fact the ith eigenvector) of BR = ATA.
Moreover, the ith eigenvalue λi of BR is the ith singular value of A squared: λi = σ2i .

Similarly we can derive

BLU = AATU = (USV T)(V SUT)U = US2,

and hence the left singular vectors of A are the eigenvectors of BL = AAT and the eigenvalues of BL are
the squared singular values of A.

1Technically, S ∈ Rn×d. To make this simple argument work, lets first assume w.l.o.g. (without loss of generality) that d ≤ n.
Then the bottom n− d rows of S are all zeros, which mean the right n− d rows of U do not matter. So we can ignore both these
n − d rows and columns. Then S is square. This makes U no longer orthogonal, so UTU is then a projection, not identity; but it
turns out this is a project to the span of A, so the argument still works.

CS 4964 Math for Data; Fall 2016 Instructor: Jeff M. Phillips, University of Utah

Eigendecomposition. In general, the eigenvectors provide a basis for a matrix B ∈ Rn×n in the same
way that the right V or left singular vectors U provide a basis for matrix A ∈ Rn×d. In fact, it is again a
very special basis, and is unique up to the multiplicity of eigenvalues. This implies that all eigenvectors are
orthogonal to each other.

Let V = [v1, v2, . . . , vn] be the eigenvectors of the matrix B ∈ Rn×n, as columns in the matrix V . Also
let L = diag(λ1, λ2, . . . , λd) be the eigenvalues of B stored on the diagonal of matrix L. Then we can
decompose B as

B = V LV −1.

Note that the inverse of L is L−1 = diag(1/λ1, 1/λ2, . . . , 1/λn). Hence we can write

B−1 = V L−1V −1.

When B is positive definite, it has n positive eigenvectors and eigenvalues; hence V is orthogonal, so
V −1 = V T . Thus in this situation, given the eigendecomposition, we now have a way to compute the
inverse

B−1 = V L−1V T ,

which was required in our almost closed-form solution for linear regression. Now we just need to compute
the eigendecomposition, which we will discuss next.

7.4 The Power Method
The power method refers to what is probably the simplest algorithm to compute the first eigenvector and
value of a matrix. By factoring out the effect of the first eigenvector, we can then recursively repeat the
process on the remainder until we have found all eigenvectors and values. Moreover, this implies we can
also reconstruct the singular value decomposition as well.

We will consider B ∈ Rn×n, a positive semidefinite matrix: B = ATA.

Algorithm 7.4.1 PowerMethod(B, q)

initialize u(0) as a random unit vector.
for i = 1 to q do
u(i) := Bu(i−1)

return v := u(q)/‖u(q)‖

We can unroll the for loop to reveal another interpretation. We can directly set v(q) = Bqv(0), so all itera-
tions are incorporated into one matrix-vector multiplication. Recall that Bq = B ·B ·B · . . . ·B, for q times.
However, these q matrix multiplications are much more expensive then q matrix-vector multiplications.

Alternatively we are provided only the matrixA (whereB = ATA) then we can run the algorithm without
explicitly constructing B (since for instance if d > n and A ∈ Rn×d, then the size of B (d2) may be much
larger than A (nd)). Then we simply replace the inside of the for-loop with

u(i) := AT (Au(i−1))

where we first multiply ũ = Au(i−1) and then complete u(i) = AT ũ.

Recovering all eigenvalues. The output of PowerMethod(B = ATA, q) is a single unit vector v, which
we will argue is arbitrarily close to the first eigenvector v1. Clearly we can recover the first eigenvalue as

CS 4964 Math for Data; Fall 2016 Instructor: Jeff M. Phillips, University of Utah

λ1 = ‖Bv1‖. Since we know the eigenvectors form a basis forB, they are orthogonal. Hence, after we have
constructed the first eigenvector v1, we can factor it out from B as follows:

A1 := A−Av1vT1 B1 := AT
1A1

Then we run PowerMethod(B1 = AT
1A1, q) to recover v2, and λ2; factor them out of B1 to obtain B2, and

iterate.

Why does the power method work? To understand why the power method works, assume we know the
eigenvectors v1, v2, . . . , vn and eigenvalues λ1, λ2, . . . , λn of B ∈ Rn×n.

Since the eigenvectors form a basis for B, and assuming it is full rank, then also for all of Rn (if not, then
it does not have n eigenvalues, and we can fill out the rest of the basis of Rn arbitrarily). Hence, for any
vector, including the initialization random vector u(0) can be written as

u(0) =

n∑
j=1

αjvj .

Recall that αj = 〈u(0), vj〉, and since it is random, it is possible to claim that with probability at least 1/2
that for any αj we have that |αj | ≥ 1

2

√
n2. We will now assume that this holds for j = 1, so α1 > 1/2

√
n.

Next since we can interpret that algorithm as v = Bqu(0), then lets analyze Bq. If B has jth eigenvector
vj and eigenvalue λj , that is, Bvj = λjvj , then Bq has jth eigenvalue λqj since

Bqvj = B ·B · . . . ·Bvj = Bq−1(vjλ) = Bq−2(vjλ)λ = vjλ
q.

This holds for each eigenvalue of Bq. Hence we can rewrite output by summing over the terms in the
eigenbasis as

v =

∑n
j=1 αjλ

q
jvj√∑n

j=1(αjλ
q
j)

2
.

Finally, we would like to show our output v is close to the first eigenvector v1. We can measure closeness
with the dot product (actually we will need to use its absolute value since we might find something close to
−v1).

|〈Bqu(0), v1〉| =
α1λ

q
1√∑n

j=1(αjλ
q
j)

2

≥ α1λ
q
1√

α2
1λ

2q
1 + nλ2t2

≥ α1λ
q
1

α1λ
q
1 + λq2

√
n

= 1− λq2
√
n

α1λ
q
1 + λq2

√
n

≥ 1− 2
√
n

(
λ2
λ1

)q

.

The first inequality holds because λ1 ≥ λ2 ≥ λj for all j > 2. The third inequality (going to third line)
holds by dropping the λq2

√
n term in the denominator, and since α1 > 1/2

√
n.

Thus if there is “gap” between the first two eigenvalues (λ1/λ2 is large), then this algorithm converges
quickly to where |〈v, v1〉| = 1.

2Since u(0) is a unit vector, its norm is 1, and because {v1, . . . , vn} is a basis, then 1 = ‖u(0)‖2 =
∑n

j=1 α
2
j . Since it is

random, then E[α2
j] = 1/n for each j. Applying a concentration of measure (almost a Markov Inequality, but need to be more

careful), we can argue that with probability 1/2 any α2
j > (1/4) · (1/n), and hence αj > (1/2) · (1/

√
n).

CS 4964 Math for Data; Fall 2016 Instructor: Jeff M. Phillips, University of Utah

7.5 Principal Component Analysis
Recall that the original goal of this topic was to find the k-dimensional subspace F to minimize

‖A− πF (A)‖2F =
∑
ai∈A
‖ai − πF (ai)‖2.

We have not actually solves this yet. The top k right singular values Vk of A only provided this bound
assuming that F contains the origin: (0, 0, . . . , 0). However, this might not be the case!

Principle Component Analysis (PCA) is an extension of the SVD when we do not restrict that the subspace
Vk must go through the origin. It turns out, like with simple linear regression, that the optimal F must go
through the mean of all of the data. So we can still use the SVD, after a simple preprocessing step called
centering to shift the data matrix so its mean is exactly at the origin.

Specifically, centering is adjusting the original input data matrix A ∈ Rn×d so that each column (each
dimension) has an average value of 0. This is easier than it seems. Define āj = 1

n

∑n
i=1Ai,j (the average

of each column j). Then set each Ãi,j = Ai,j − āj to represent the entry in the ith row and jth column of
centered matrix Ã.

There is a centering matrixCn = In− 1
n11T where In is the n×n identity matrix, 1 is the all-ones column

vector (of length n) and thus 11T is the all-ones n× n matrix. Then we can also just write Ã = CnA.
Now to perform PCA on a data set A, we compute [U, S, V] = svd(CnA) = svd(Ã).
Then the resulting singular values diag(S) = {σ1, σ2, . . . , σr} are known as the principle values, and the

top k right singular vectors Vk = [v1 v2 . . . vk] are known as the top-k principle directions.
This often gives a better fitting to the data than just SVD. The SVD finds the best rank-k approximation

ofA, which is the best k-dimensional subspace (up to Frobenius and spectral norms) which passes through
the origin. If all of the data is far from the origin, this can essentially “waste” a dimension to pass through
the origin. However, we also need to store the shift from the origin, a vector c̃ = (ã1, ã2, . . . , ãd) ∈ Rd.

7.6 Multidimensional Scaling
Dimensionality reduction is an abstract problem with input of a high-dimensional data set P ⊂ Rd and a
goal of finding a corresponding lower dimensional data set Q ⊂ Rk, where k << d, and properties of P
are preserved in Q. Both low-rank approximations through direct SVD and through PCA are examples of
this: Q = πVk

(P). However, these techniques require an explicit representation of P to start with. In some
cases, we are only presented P more abstractly. There two common situations:

• We are provided a set of n objects X , and a bivariate function d : X ×X → R that returns a distance
between them. For instance, we can put two cities into an airline website, and it may return a dollar
amount for the cheapest flight between those two cities. This dollar amount is our “distance.”

• We are simply provided a matrix D ∈ Rn×n, where each entry Di,j is the distance between the ith
and jth point. In the first scenario, we can calculate such a matrix D.

Multi-Dimensional Scaling (MDS) has the goal of taking such a distance matrixD for n points and giving
low-dimensional (typically) Euclidean coordinates to these points so that the embedded points have similar
spatial relations to that described in D. If we had some original data set A which resulted in D, we could
just apply PCA to find the embedding. It is important to note, in the setting of MDS we are typically just
given D, and not the original data A. However, as we will show next, we can derive a matrix that will act
like AAT using only D.

A similarity matrix M is an n × n matrix where entry Mi,j is the similarity between the ith and the jth
data point. The similarity often associated with Euclidean distance ‖ai − aj‖ is the standard inner (or dot

CS 4964 Math for Data; Fall 2016 Instructor: Jeff M. Phillips, University of Utah

product) 〈ai, aj〉. We can write

‖ai − aj‖2 = ‖ai‖2 + ‖aj‖2 − 2〈ai, aj〉,

and hence
〈ai, aj〉 =

1

2

(
‖ai‖2 + ‖aj‖2 − ‖ai − aj‖2

)
. (7.1)

Next we observe that for the n× n matrix AAT the entry [AAT]i,j = 〈ai, aj〉. So it seems hopeful we can
derive AAT from D using equation (7.1). That is we can set ‖ai − aj‖2 = D2

i,j . However, we need also
need values for ‖ai‖2 and ‖aj‖2.

Since the embedding has an arbitrary shift to it (if we add a shift vector s to all embedding points,
then no distances change), then we can arbitrarily choose a1 to be at the origin. Then ‖a1‖2 = 0 and
‖aj‖2 = ‖a1 − aj‖2 = D2

1,j . Using this assumption and equation (7.1), we can then derive the similarity
matrixAAT . Then we can run the eigen-decomposition onAAT and use the coordinates of each point along
the first k eigenvectors to get an embedding. This is known as classical MDS.

It is often used for k as 2 or 3 so the data can be easily visualized.
There are several other forms that try to preserve the distance more directly, where as this approach

is essentially just minimizing the squared residuals of the projection from some unknown original (high-
dimensional embedding). One can see that we recover the distances with no error if we use all n eigenvectors
– if they exist. However, as mentioned, there may be less than n eigenvectors, or they may be associated
with complex eigenvalues. So if our goal is an embedding into k = 3 or k = 10, there is no guarantee that
this will work, or even what guarantees this will have. But MDS is used a lot nonetheless.

CS 4964 Math for Data; Fall 2016 Instructor: Jeff M. Phillips, University of Utah

