
2 Bayes’ Rule

This topic is on Bayes’ Rule and Bayesian Reasoning. Bayes’ Rule is the key component in how to build
likelihood functions, which are key to evaluating models based on data. Bayesian Reasoning is surprisingly
different, much more about modeling uncertainty.

2.1 Bayes’ Rule

Given two events M and D, then Bayes’ Rule states

Pr(M | D) =
Pr(D |M) · Pr(M)

Pr(D)
.

This assumes nothing about the independence of M and D (otherwise its pretty uninteresting). To derive
this we use

Pr(M ∩D) = Pr(M | D)Pr(D)

and also

Pr(M ∩D) = Pr(D ∩M) = Pr(D |M)Pr(M),

combined to get Pr(M | D)Pr(D) = Pr(D |M)Pr(M), from which we can solve for Pr(M | D).

Example: Checking Bayes’ Rule
Consider two events M and D with the following joint probability table:

M = 1 M = 0

D = 1 0.25 0.5
D = 0 0.2 0.05

We can observe that indeed Pr(M | D) = Pr(M ∩D)/Pr(D) = 0.25
0.75 = 1

3 , which is equal to

Pr(D |M)Pr(M)

Pr(D)
=

.25
.2+.25(.2 + .25)

.25 + .5
=
.25

.75
=

1

3
.

But Bayes’ rule is not very interested in the above example. In that example, it actually more complicated
to calculate the right side of Bayes’ rule than it is the left side.
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Example: Cracked Windshield
Consider you bought a new car and its windshield was cracked, the eventW . If the car was assembled
at one of three factories A, B or C, you would like to know which factory was the most likely point
of origin.
Assume that in Utah 50% of cars are from factory A (that is Pr(A) = 0.5) and 30% are from factory
B (Pr(B) = 0.3), and 20% are from factory C (Pr(C) = 0.2).
Then you look up statistics online, and find the following rates of cracked windshields for each
factory – apparently this is a problem! In factory A, only 1% are cracked, in factory B 10% are
cracked, and in factory C 2% are cracked. That is Pr(W | A) = 0.01, Pr(W | B) = 0.1 and
Pr(W | C) = 0.02.
We can now calculate the probability the car came from each factory:

• Pr(A |W ) = Pr(W | A) · Pr(A)/Pr(W ) = 0.01 · 0.5/Pr(W ) = 0.005/Pr(W ).

• Pr(B |W ) = Pr(W | B) · Pr(B)/Pr(W ) = 0.1 · 0.3/Pr(W ) = 0.03/Pr(W ).

• Pr(C |W ) = Pr(W | C) · Pr(C)/Pr(W ) = 0.02 · 0.2/Pr(W ) = 0.004/Pr(W ).

We did not calculate Pr(W ), but it must be the same for all factory events, so to find the highest
probability factory we can ignore it. The Pr(B |W ) = 0.03/Pr(W ) is the largest, andB is the most
likely factory.

2.1.1 Model Given Data
In data analysis, M represents a ‘model’ and D as ’data.’ Then Pr(M | D) is interpreted as the probability
of model M given that we have observed D. A maximum a posteriori (or MAP) estimate is the model
M ∈ ΩM that maximizes Pr(M | D). That is

M∗ = arg max
M∈ΩM

Pr(M | D) = arg max
M∈ΩM

Pr(D |M)Pr(M)

Pr(D)
= arg max

M∈ΩM
Pr(D |M)Pr(M).

Thus, to use Bayes’ Rule, we can maximize Pr(M | D) using Pr(M) and Pr(M | D). We do not need
Pr(D) since our data is given to us and fixed for all models.

In some settings we may also ignore Pr(M), as we may assume all possible models are equally likely.
This is not always the case, and we’ll come back to this. Thus we just need to calculate Pr(D | M). Then,
in this setting L(M) = Pr(D |M) is called the likelihood of model M .

So what is a ‘model’ and what is ’data?’ A model is usually a simple pattern which we think data generated
from, but then observed with some noise. Examples:

• The model M is a single point in Rd; the data is a set of points in Rd near M .
• linear regression: The model M is a line in R2; the data is a set of points such that for each x-

coordinate, the y-coordinate is the value of the line at that x-coordinate with some added noise in the
y-value.
• clustering: The model M is a set of points in Rd; the data is a set of points in Rd, where each point

is near one of the points in M .
• PCA: The model M is a k-dimensional subspace in Rd (for k � d); the data is a set of points in Rd,

where each point is near M .
• linear classification: The modelM is a halfspace in Rd; the data is a set of labeled points (with labels

+ or −), so the + points are mostly in M , and the − points are mainly not in M .
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Example: Gaussian MLE
Let the data D be a set of points in R1 : {1, 3, 12, 5, 9}. Let ΩM be R so that the model is a point
M ∈ R. If we assume that each data point is observed with independent Gaussian noise (with σ = 2,
so its pdf is described as g(x) = 1√

8π
exp(−1

8(M − x)2). Then

Pr(D |M) =
∏
x∈D

g(x) =
∏
x∈D

(
1√
8π

exp(−1

8
(M − x)2)

)
.

Recall that we can take the product Πx∈Dg(x) since we assume independence of x ∈ D! To find
M∗ = arg maxM Pr(D | M) is equivalent to arg maxM ln(Pr(D | M)), the log-likelihood which
is

ln(Pr(D |M)) = ln

(∏
x∈D

(
1√
8π

exp(−1

8
(M − x)2)

))
=
∑
x∈D

(
−1

8
(M − x)2

)
+|D| ln(

1√
8π

).

We can ignore the last term since it is independent of M . The first term is maximized when∑
x∈D(M − x)2 is minimized, which occurs precisely as E[D] = 1

|D|
∑

x∈D x, the mean of the
data set D. That is, the maximum likelihood model is exactly the mean of the data D, and is quite
easy to calculate.

2.2 Bayesian Inference

Bayesian inference focuses on a simplified version of Bayes’s Rule:

Pr(M | D) ∝ Pr(D |M) · Pr(M).

The symbol ∝ means proportional to; that is there is a fixed (but possibly unknown) constant factor c
multiplied on the right (in this case c = 1/Pr(D)) to make them equal: Pr(M | D) = c·Pr(D |M)·Pr(M).

However, we may want to use continuous random variables, so then strictly using Pr is not always correct.
So we can replace each of these with pdfs

p(M | D) ∝ f(D |M) · π(M).

Each of these terms have common names. As above, the conditional probability or pdf Pr(D |M) ∝ f(D |
M) is called the likelihood. The probability or pdf of the model Pr(M) ∝ π(M) is called the prior. And
the left hand side Pr(M | D) ∝ p(M | D) is called the posterior.

Again it is common to be in a situation where, given a fixed model M , it is possible to calculate the
likelihood f(D | M). And again, the goal is to be able to compute p(M | D), as this allows us to evaluate
potential models M , given data we have seen D.

The main difference is a careful analysis of π(M), the prior – which is not necessarily assumed uniform
or “flat”. The prior allows us to encode our assumptions.
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Example: Average Height
Lets estimate the heightH of a typical U of U student. We can construct a data setD = {x1, . . . , xn}
by measuring the height of everyone in this class in inches. There may be error in the measurement,
and we are an incomplete set, so we don’t entirely trust the data.
So we introduce a prior π(M). Consider we read that the average height of an full grown person is
66 inches, with a standard deviation of 6 inches. So we assume

π(M) = N(66, 6) =
1√
π72

exp(−(M − 66)2/(2 · 62)),

is normally distributed around 66 inches.
Now, given this knowledge we adjust the MLE example from last lecture using this prior.

• What if our MLE estimate without the prior (e.g. 1
|D|
∑

x∈D x) provides a value of 5.5?
That means the data is very far from the prior. Usually this means something is wrong. We
could find arg maxM p(M | D) using this information, but that may give us an estimate of say
20 (that does not seem correct). A more likely explanation is a mistake somewhere: probably
we measured in feet instead of inches!

Another vestige of Bayesian inference is that we not only can calculate the maximum likelihood model
M∗, but we can also provide a posterior value for any model! This value is not an absolute probability (its
not normalized, and regardless it may be of measure 0), but it is powerful in other ways:

• We can say (under our model assumptions, which are now clearly stated) that one model M1 is twice
as likely as another M2, if p(M1 | D)/p(M2 | D) = 2.

• We can define a range of parameter values (with more work and under our model assumptions) that
likely contains the true model.

• We can now use more than one model for prediction of a value. Given a new data point x′ we may
want to map it onto our model as M(x′), or assign it a score of fit. Instead of doing this for just one
“best” model M∗, we can take a weighted average of all models, weighted by their posterior; this is
“marginalization.”

Weight for Prior. So how important is the prior? In the average height example, it will turn out to be worth
only (1/9)th of one student’s measurement. But we can give it more weight.
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Example: Weighted Prior for Height
Lets continue the example about the height of an average U of U student, and assume (as in the MLE
estimator example) the data is generated independently from a model M with Gaussian noise with
σ = 2. Thus the likelihood of the model, given the data is

f(D |M) =
∏
x∈D

g(x) =
∏
x∈D

(
1√
8π

exp(−1

8
(M − x)2)

)
.

Now using that the prior of the model is π(M) = 1√
π72

exp(−(M − 66)2/72), the posterior is given
by

p(M | D) ∝ f(D |M) · 1√
π72

exp(−(M − 66)2/72).

It is again easier to work with the log-posterior which is monotonic with the posterior, using some
unspecified constant C (which can be effectively ignored):

ln(p(M | D)) ∝ ln(f(D |M)) + ln(π(M)) + C

∝
∑
x∈D

(
−1

8
(M − x)2)− 1

72
(M − 66)2

)
+ C

∝ −
∑
x∈D

9(M − x)2 + (M − 66)2 + C

So the maximum likelihood estimator occurs at the average of 66 along with 9 copies of the student
data.

Why is student measurement data worth so much more?
We assume the standard deviation of the measurement error is 2, where as we assumed that the standard

deviation of the full population was 6. In other words, our measurements had variance 22 = 4, and the
population had variance 62 = 36: that is 9 times as much.

If instead we assumed that the standard deviation of our prior is 0.1, with variance 0.01, then this is 400
times smaller than our class measurement error variance. If we were to redo the above calculations with this
smaller variance, we would find that this assumption weights the prior 400 times the effect of each student
measurement in the MLE.

So what happens with more data?
Lets say, this class gets really popular, and next year 1000 students sign up! Then again the student data

is overall worth more than the prior data. So with any prior, if we get enough data, it no longer becomes
important. But with a small amount of data, it can have a large influence on our model.

Disclaimer: We probably won’t get to all of this, don’t worry if the next section is intense.
Hierarchical Models. What if we do not know what prior to put on the data? But we have a guess of what
this may be. For instance, we may not know whether to model the prior as a normal random variable, a
uniform random variable, or a Laplace random variable. We may think each scenario is equally likely. Then
we could replace

π(M) =
1

3
πN (M) +

1

3
πU (M) +

1

3
πL(M),

with three prior distributions πN if it is normal, πU if it is uniform, and πL if it is Laplace. We have just
put a prior on our prior! In this case we introduced a new random variable φ, the type of prior distribution,
which takes a value Pr(φ = N) = Pr(φ = U) = Pr(φ = L) = 1/3. Then the model is actually defined
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θ = (M,φ), and we can write

p(θ | D) ∝ fθ(θ | D)π(θ) ∝ fθ(θ | D)fM |φ(M | φ)π(φ),

since π(θ) ∝ Pr(M, θ) ∝ fM |φ(M | φ)π(φ). But then we do not care about the probability of θ = (M,φ),
just M . So we need to marginalize out φ.

p(M | D) =

∫
µ∈Ωφ

p((M,φ = µ) | D) · π(φ) ∝
∫
µ∈Ωφ

fθ((M,φ = µ) | D)πθ((M,φ = µ)) · π(φ).

And in our initial case, we have Ωφ = {N,U,L} and πθ(M,φ = µ)) = πµ(M) when φ = µ; that is
πN (M) or πU (M) or πL(M). So

p(M | D) =
1

3

∑
µ∈{N,U,L}

fθ((M,φ = µ) | D)πµ(M).

The same way we marginalized our φ, if we want to use a model to make a prediction, we can also
marginalize out M , and make a prediction using the weighted averages of all models, weighted by those
models posteriors.
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