
1 Probability Review

Probability is a critical tool for modern data analysis. It arises in dealing with uncertainty, in randomized
algorithms, and in Bayesian analysis. To understand any of these concepts correctly, it is then paramount to
have a solid and rigorous statistical foundation. Hence we will review some key definitions.

1.1 Sample Spaces
Probability is defined through set theory, starting with a sample space Ω. This represents the space of all
things that might happen. One such potential outcome ω ∈ Ω is a sample outcome, is an element of the
space Ω. We are usually interested in an event that is a subset A ⊆ Ω of the sample space.

Example: Discrete Sample Space
Consider rolling a single fair, 6-sided die. Then Ω = {1, 2, 3, 4, 5, 6}. One roll may produce an
outcome ω = 3, rolling a 3. An event might be A = {1, 3, 5}, any odd numbers.
The probability of rolling an odd number is then Pr(A) = |{1, 3, 5}|/|{1, 2, 3, 4, 5, 6}| = 1/2.

A random variable X : Ω → S is a function from the sample space Ω to a domain S. Many times
S ⊆ R, where R is the space of real numbers.

Example: Random Variable
Consider flipping a fair coin with Ω = {H,T}. If I get a head H , then I get 1 point, and if I get a T ,
then I get 4 points. This describes the random variable X , defined X(H) = 1 and X(T ) = 4.

The probability of an event Pr(A) satisfies the following properties:

• 0 ≤ Pr(A) ≤ 1 for any A,

• Pr(Ω) = 1, and

• The probability of the union of disjoint events is equivalent to the sum of their individual probabilities.
Formally, for any sequence A1, A2, . . . where for all i 6= j that Ai ∩Aj = ∅, then

Pr

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

Pr(Ai).

Example: Continuous Sample Space
Assume you are riding a Swiss train that is always on time, but its departure is only specified to the
minute (specifically, 1:37 pm). The true departure is then in the state space Ω = [1:37:00, 1:38:00).
A continuous event may be A = [1:37:00− 1:37:40), the first 40 seconds of that minute.
Perhaps the train operators are risk averse, so Pr(A) = 0.80. That indicates that 0.8 fraction of trains
depart in the first 2/3 of that minute (less than the 0.666 expected from a uniform distribution).
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1.2 Conditional Probability and Independence
Now consider two events A and B. The conditional probability of A given B is written Pr(A | B), and
can be interpreted as the probability of A, restricted to the setting where we know B is true. It is defined in
simpler terms as Pr(A | B) = Pr(A∩B)

Pr(B) , that is the probabilityA andB are both true, divided by (normalized
by) the probability B is true.

Two events A and B are independent of each other if and only if

Pr(A | B) = Pr(A).

Alternatively they are independent if and only if Pr(B | A) = Pr(B) or Pr(A ∩ B) = Pr(A)Pr(B). By
algebraic manipulation, it is not hard to see these are all equivalent. This implies that knowledge about B
has no effect on the probability of A (and vice versa from A to B).

Example: Conditional Probability
Consider the two random variables. T is 1 if a test for cancer is positive, and 0 otherwise. Variable
C is 1 if a patient has cancer, and 0 otherwise. The joint probability of the events is captured in the
following table:

C = 1 C = 0

T = 1 0.1 0.02
T = 0 0.05 0.83

Note that the sum of all cells is 1. The conditional probability of having cancer, given a positive
test is Pr(C = 1 | T = 1) = 0.1

0.1+0.02 = 0.8333. The probability of cancer (ignoring the test) is
Pr(C = 1) = 0.1 + 0.05 = 0.15. Since Pr(C = 1 | T = 1) 6= Pr(C = 1), then events T = 1 and
C = 1 are not independent.

Two random variables X and Y are independent if and only if, for all possible events A ⊆ ΩX and
B ⊆ ΩY that A and B are independent: Pr(A ∩B) = Pr(A)Pr(B).

1.3 Density Functions
Discrete random variables can often be defined through tables. Or we can define a function fX(k) as
the probability that random variable X is equal to k. For continuous random variables we need to be
more careful, and use calculus. We will next develop probability density functions and cumulative density
functions for continuous random variables; the same constructions are sometimes useful for discrete random
variables as well, which basically just replace a integral with a sum.

We consider a continuous sample space Ω, and a random variable X defined on that sample space. The
probability density function of a random variable X is written fX . It is defined with respect to any event A
so that Pr(X ∈ A) =

∫
ω∈A fX(ω)dω. The value fX(ω) 6= Pr(X = ω), since for any purely continuous

function Pr(X = ω) = 0 for any single value ω ∈ Ω. We can interpret fX as a likelihood function; its value
has no units, but they can be compared and larger ones are more likely.

Next we will defined the cumulative density function FX(t); it is the probability that X takes on a value
of t or smaller. For this it is typically used when Ω = R, the set of real numbers. Now define FX(t) =∫ t
ω=−∞ fX(ω)dω.

We can also define a pdf in terms of a cdf as fX(ω) = dFX(ω)
dx .
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Example: Normal Random Variable
A normal random variable X is a very common distribution to model noise. It has domain Ω = R.
Its pdf is defined fX(ω) = 1√

2π
exp(−ω2/2) = 1√

2π
e−ω

2/2, and its cdf has no closed form solution.
We have plotted the cdf and pdf in the range [−3, 3] where most of the mass lies:
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import matplotlib as mpl
mpl.use(’PDF’)
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import scipy.special as sps
import numpy as np
import math

# no built-in normalcdf, but erf() is cdf of signed Gaussian error,
# cdf of (1/sqrt(2 pi)) exp(-xˆ2), but shifted to pass through (0,0)
def normcdf(x):
return 0.5*(1 + sps.erf(x/math.sqrt(2)))

x = np.linspace(-3, 3, 100)

plt.plot(x, mlab.normpdf(x, 0, 1),linewidth=2.0, label=’normal PDF’)
plt.plot(x, normcdf(x),linewidth=2.0, label=’normal CDF’)
plt.legend(bbox_to_anchor=(.35,1))

plt.savefig(’normal.pdf’, bbox_inches=’tight’)

1.4 Expected Value
The expected value of a random variableX in a domain Ω is a very important constant, basically a weighted
average of Ω, weighted by the range of X . For a discrete random variable X it is defined

E[X] =
∑
ω∈Ω

ω · Pr[X = ω].

For a continuous random variable X it is defined

E[X] =

∫
ω∈Ω

ωfX(ω)dω.
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Linearity of Expectation: An important property of expectation is that it is a linear operation. That
means for two random variables X and Y we have E[X +Y ] = E[X] + E[Y ]. For a scalar value α, we also
E[αX] = αE[X].

Example: Expectation
Let H be the random variable of the height of a man in meters without shoes. Let the pdf fH of H
be a normal distribution with mean µ = 1.755m with standard deviation 0.1m. Let S be the random
variable of the height added by wearing a pair of shoes in centimeters (1 meter is 100 centimeters),
its pdf is given by the following table:

S = 1 S = 2 S = 3 S = 4

0.1 0.1 0.5 0.3

Then the expected height of someone wearing shoes in centimeters is

E[100·H+S] = 100·E[H]+E[S] = 100·1.755+(0.1·1+0.1·2+0.5·3+0.3·4) = 175.5+3 = 178.5

1.5 Variance
The variance of a random variable X describes how spread out it is. It is defined

Var[X] = E[(X − E[X])2] = E[X2]− E[X]2.

The equivalence of those two common forms uses that E[X] is a fixed scalar:

E[(X − E[X])2] = E[X2 − 2XE[X] + E[X]2] = E[X2]− 2E[X]E[X] + E[X]2 = E[X2]− E[X]2.

For any scalar α ∈ R, then Var[αX] = α2Var[X].
Note that the variance does not have the same units as the random variable or the expectation, it is that

unit squared. As such, we also often use the standard deviation σX =
√

Var[X].

Example: Variance
Consider again the random variable S for height added by a shoe:

S = 1 S = 2 S = 3 S = 4

0.1 0.1 0.5 0.3

Its expected value is E[S] = 3 (a fixed scalar), and its variance is

Var[S] = 0.1 · (1− 3)2 + 0.1 · (2− 3)2 + 0.5 · (3− 3)2 + 0.3 · (4− 3)2

= 0.1 · (−2)2 + 0.1 · (−1)2 + 0 + 0.3(1)2 = 0.4 + 0.1 + 0.3 = 0.8.

Then the standard deviation is σS =
√

0.8 ≈ 0.894.

The covariance of two random variables X and Y is defined Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])].
It measures how much these random variables vary in accordance with each other; that is, if both are con-
sistently away from the mean at the same time (in the same direction), then the covariance is high.
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1.6 Joint, Marginal, and Conditional Distributions
We now extend some of these concepts to more than one random variable. Consider two random variables
X and Y . Their joint pdf is defined fX,Y : ΩX × ΩY → [0,∞] where for discrete random variables this is
defined by the probability fX,Y (x, y) = Pr(X = x, Y = y). In this case, the domain of fX,Y is restricted
so fX,Y ∈ [0, 1] and so

∑
x,y∈X×Y fX,Y (x, y) = 1.

Similarly, when ΩX = ΩY = R, the joint cdf is defined FX,Y (x, y) = Pr(X ≤ x, Y ≤ y). The
marginal cumulative distribution functions of FX,Y are defined as FX(x) = limy→∞ FX,Y (x, y)dy and
FY (y) = limx→∞ FX,Y (x, y)dx.

Similarly, when Y is discrete, the marginal pdf is defined fX(x) =
∑

y∈ΩY
fX,Y (x, y) =

∑
y∈ΩY

Pr(X =

x, Y = y). When the random variables are continuous, we define fX,Y (x, y) =
d2FX,Y (x,y)

dxdy . And then the
margin pdf of X (when ΩY = R) is defined fX(x) =

∫∞
−∞ fX,Y (x, y)dy. Marginalizing removes the effect

of a random variable (Y in the above definitions).
Now we can say random variables X and Y are independent if and only if fX,Y (x, y) = fX(x) · fY (y)

for all x and y.
Then a conditional distribution of X given Y = y is defined fX|Y (x | y) = fX,Y (x, y)/fY (y) (given

that fY (y) 6= 0).

Example: Marginal Distributions
Consider someone who randomly chooses his pants and shirt every day (a friend of mine actually did
this in college – all clothes were in a pile, clean or dirty). Let P be a random variable for the color of
pants, and S a random variable for the color of the shirt. Their joint probability is described by this
table:

S=green S=red S=blue
P=blue 0.3 0.1 0.2
P=white 0.05 0.2 0.15

Adding up along columns, the marginal distribution fP for the color of the shirt is described by the
following table:

S=green S=red S=blue
0.35 0.3 0.35

Isolating and renormalizing the middle “S=red” column, the conditional distribution fP |S(· | S= red)
if described by the following table:

P=blue P=white
0.1
0.3 = 0.3333 0.2

0.3 = 0.6666
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