
L9 -- Hierarchical Clustering
[Jeff Phillips - Utah - Data Mining]

What is clustering?  
 one of the most ambiguous topics ever!
 - I'll ambiguously define it.
 - Then I'll formally define it.
 - Then I'll tell you why you maybe should *not* formally define it!

----------------------------
Let P be a data set.  (perhaps in R^d, but maybe not)
let d : P x P -> |R be a metric distance on P

A cluster S is a subset of P.  
Typically we find a set {S_1, S_2, ... S_k} subset P
  s.t. S_i disjoint S_j   and   union_i S_i = P

goal:  
 - all for all points p_i, p_j in S
   d(p_i, p_j) is small
   "width"
 - all (most) points p_i in S_i, p_j in S_j  and i!=j
   d(p_i, p_j) is large
   "split"

Want "split"/"width" large.  
----------------------------

Draw points in plane.  
Illustrate possible clusters.
Illustrate split/width.

----------------------------
Hierarchical/Agglomerative Clustering!

------
If two points are close --> put them in the same cluster.
Repeat.  
------

Init:  All points are 1 point clusters.
WHILE (2 clusters are "close enough")
  Find two "closest" clusters: S_i, S_j 
  Merge clusters.

2 parts remain to be specified:  "close"  and  "close enough"



-----------------
What is "close"?
 - distance between "centers" of clusters
   "center" = mean, center-point (median), center of MEB, 
              some representative = min distance to other points "Non-
Euclidean"
 - distance between closest points
 - distance between furthest points
 - average distance between all pairs of points in different clusters
 - lowest radius of MEB between joined cluster
 - smallest average distance between point and center

** there are often ties **

-------------------
What is "close enough"?
 - diameter, radius of MEB, average from center beneath threshold?
   fixes scale (good/bad?)
 - density beneath threshold.
   "density" = # points/volume, # points/radius^d
 - joined density jumps too quickly since last time  "elbow"
 - when we have k clusters

--------------------
Hierarchy --> Phylogenic Tree
--------------------

Efficiency:  (specific:  closest to centroid, never stop)
  O(n^3)
    - O(n) rounds
    - x O(n^2) each round, check all pairs to find closest
    -   + O(n) to recompute centroid

can reduce to O(n^2 log n):  maintain priority queue of O(n^2) distance
   - updates affect O(n) distances, each takes O(log n) time
   - O(n) rounds | updates

----------------------------------------------

k-center clustering
  "Gonzalez Algorithm 85"
"HAC" one form of greedy.  Different form of greedy.



  --> be greedy, but be smart and greedy :)

k-center clustering:  
  Find k points C = {c_1, ..., c_k}, s.t. 
   - each p \in P assigned mu(p) = arg min_{c in C} d(p,c)
   - minimize max_{p in P} d(p, mu(p))

(like k-means   minimize sum_{p in P} d(p,mu(p))^2  )
(     k-median  minimize sum_{p in P} d(p,mu(p))    )

k-center cluster optimally is NP-Hard.
   better than 2-appox  -->  also NP-Hard !!!

-----------
Choose first c_1 arbitrarily
  C_1 = {c_1}    (generally C_i = {C_1, C_2, ..., C_i}  \\ goal C_k)

Let c_{i+1} = arg max_{p in P \ C_i} d(p,mu(p))
   "always pick point furtherest from set of centers C_i"
----------

2-approx to optimal algorithm (worst case).  Often much better.  

O(k^2 n)  O(k) rounds x O(kn) per round
  ---
O(kn) : maintain mu(p)
 O(k) rounds
  - maintain mu(P)
  - on new c_i, spend O(n) to check each point if closer,
    update t_j = max_{p \in P \ C_i} d(p,mu(p)) s.t. mu(p) = c_j
       for each c_j \in C_i
    update t = max_j t_j

*** Works for any metric.  
*** Biases centers to "edge" of data set.  
    - heuristic to recenter:  after run, find "clusteroid" of mu^{-1}(c_j) as 
new c_j


