
L8 -- SIFT + Near-Neighbor Search
[Jeff Phillips - Utah - Data Mining]

Real Data:
text documents
key words searches
image data

Abstract Data w/ abstract distance:
sets of objects | Jaccard distance
strings | edit distance
SIFT features R^128 | Euclidean distance

What are SIFT features:
 (scale-invariant feature transform)

What is an image:

[]
[]
[]
[]
[]
[]
[]
[]
[]
[]

each [] has rgb-values (lets assume [0,1])

Each [] might have a SIFT feature
 -only collect features for extremal points in "scale space"
 corners of object in pictures, where color changes abruptly
 -determine "scale" sigma at which feature is sharpest

Gradient Histogram:
[1][2][3]
[4][X][5]
[6][7][8]
--> gradient histogram:
something like: [1-X][2-X][3-X][4-X][5-X][6-X][7-X][8-X]
 shows relative change in magnitude

Consider 4x4 grid with scale sigma, vertex at X

| | | | | |
| 1| 2| | 3| 4|
------- -------
| | | | | |
| 5| 6| | 7| 8|
-------X-------
| | | | | |
| 9|10| |11|12|
------- -------
| | | | | |
|13|14| |15|16|

for each grid cell i in [16],
 compute a gradient histogram (8 bins) H_i
 make it relative to H_X
 something like: H_i = H_X/H_i

X has 8 x 16 = 128 vector V_X
 normalize so ||V_X|| = 1
 if any component is > .2, reset to .2 and renormalize

Compare distance between d(V_X,V_Y) as Euclidean distance.
Use approximate search to speed things up.

How to find (approximate) near neighbors

Set P subset R^d |P| = n. d is large (e.g. 128)

Query point q \in R^d
p^* = arg min_{p \in P} d(p,q)

Goal: find p in P s.t.
 dist(p,q) <= (1+eps)dist(p^*,q)

centered at q:
circle C_r radius r = d(p^*,q)
circle C_r,eps radius (1+eps)r
annulus C_r,eps \ C_r == don't care

LSH not explicitly designed for ANN. Returns all within r, maybe within
(1+eps)r. Where r is fixed.
Can run with progressively larger values of r. But loses some factor. but
works ok for very high d (see Andoni code: google "LSH")

**kd-tree:
divide space by R^d into two points split in dimension i
 alternate i in [d] in cyclic order
 each step have half remaining points each side

**quad-tree:
divide space into 2^d axis-aligned rectangles each round,
 each has at most n/2 points (hopefully less)

**R-tree:
split points into two covering rectangles each round
 searching in O(2^d log n)

**B-tree: (dim = 1)
split points into B sub-intervals each round.
 each "node" stored on one disk block of size B
 hard to implement efficiently for d>1

Stop when leaf has CONSTANT > 1 number of points

Now given a query q in R^d:
 - find leaf which contains q (find closest point)
 - search nearby nodes to see if closer
 - don't search sub-trees if **all** further than (1-eps)d(p',q)

* may need to search many subtrees. Runtime ~~ O(2^d log n) or O(log^d n)
* adds overheard to linear scan (IO efficient)
* with eps=0, linear scan cheaper when d > 5 or so

Problem w/ high dimensions
 - want ball, get cube
 volume ball(d, rad=1) = pi^{d/2}/Gamma(d/2+1) rad^d
 ~ pi^{d/2}/((d/2)!)
 gets small --> 0
 volume cube(d,rad=1) = 2^d
 gets large --> infty

So with rectilinear search, we get everything in the d-cube, but want
everything in d-ball

Approximate methods can go up to maybe d=8-20.
Google: "ANN" 3rd hit (which is amazing for the name Ann)

Advanced techniques:
how to choose better split?
 - cluster all data (k-means -> split k ways)
 - project to k-dim, split 2^k ways.
improve greatly if data is intrinsically in lower dimensions.

