
Statistical Principles∗

Overview

We will study three phenomenon of random processes that describe three very important, and possibly
un-intuitive, phenomenon. The goal will be to explore, formalize, and hopefully make intuitive these phe-
nomenon. They are

Birthday Paradox: To measure the expected collision of random events.

A random group of 23 people has about a 50% chance of having two with the same birthday.

Coupon Collectors: To measure the expectation for seeing all possible outcomes of a discrete random variable.

Consider a lottery where on each trial you receive one of n possible coupons at random. It takes in
expectation about 1.577n lnn trials to collect them all.

ε-Samples: To bound the number of events needed to evenly distribute random samples.

Consider the same random lottery after k trials. We expect to have k/n of each coupon, but some
more, some less. For any one coupon it takes k = (1/ε2) ln(1/δ) trials (for 0 < ε < 1 and 0 < δ < 1)
so that there are no more than n/k + εk of that coupon with probability at least 1− δ.

From another perspective, these all describe the effects of random variation. The first describes collision
events, the second covering events, and the third smoothing events – how long it takes for random variation
to evenly distribute. I know the last one seems a bit mysterious now, but I hope it will become more natural
by the time we get there.

Model. For all settings, there is a common model of random elements drawn from a discrete universe.
The universe has n possible objects; we represent this as [n] and let i ∈ [n] represent one element (indexed
by i) in this universe. The n objects may be IP addresses, days of the year, words in a dictionary, but we
can always have each element (IP address, day, word) map to a distinct integer i where 0 < i ≤ n. Then we
study the properties of drawing k items uniformly at random from [n] with replacement.

1 Birthday Paradox

First, let us consider the famous situation of birthdays. Lets make formal the setting. Consider a room of k
people, chosen at random from the population, and assume each person is equally likely to have any birthday
(excluding February 29th), so there are n = 365 possible birthdays.

The probability that any two (i.e. k = 2) people (ALICE and BOB) have the same birthday is 1/n =
1/365 ≈ 0.003. The birthday of ALICE could be anything, but once it is known by ALICE, then BOB has
probability 1/365 of matching it.

To measure that at least one pair of people have the same birthday, it is easier to measure the probability
that no pair is the same. For k = 2 the answer is 1− 1/n and for n = 365 that is about 0.997.
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For a general number k (say k = 23) there are
(
k
2

)
= k · (k−1)/2 (read as k choose 2) pairs. For k = 23,

then
(
23
2

)
= 253. Note that

(
k
2

)
= Θ(k2).

We need for each of these events that the birthdays do not match. Assuming independence we have

(1− 1/n)(
k
2) or 0.997253 = 0.467.

And the probability there is a match is thus 1 minus this number

1− (1− 1/n)(
k
2) or 1− 0.997253 = 0.532,

just over 50%.

What are the problems with this?

• First, the birthdays may not be independently distributed. More people are born in spring. There may
be non-negligible occurrence of twins.

Sometimes this is really a problem, but often it is negligible. Other times this analysis will describe
an algorithm we create, and we can control independence.

• Second, what happens when k = n+1, then we should always have some pair with the same birthday.
But for k = 366 and n = 365 then

1− (1− 1/n)(
k
2) = 1− (364/365)(

366
2 ) = 1− (0.997)66795 = 1− 7× 10−88 < 1.

Yes, it is very small, but it is less than 1, and hence must be wrong.

Really, the probability should be

1−
(
n− 1

n

)k−1
·
(
n− 2

n− 1

)k−2
·
(
n− 3

n− 2

)k−3
· . . . = 1−

k−1∏
i=1

(
n− i− 1

n− i

)k−i
,

where in the (n− 1)st term (n− (n− 1)− 1)/(n− (n− 1)) = 0/1 = 0. We can think of checking
each person against all others. In a series of epochs, each person checks against all others, that have
not yet been checked. When that person is done checking, the next epoch begins. Thus, the first
epoch has k − 1 checks, each with probability 364/365 of no match. Only if all are no matches do
we continue. Then the second epoch only has 364 possible birthdays remaining, since the first person
was already checked, and everyone else is different. So each of the k − 2 checks in the second epoch
has probability 363/364 of no match, and so on.

Take away message.

• There are collisions in random data!

• More precisely, if you have n equi-probability random events, then expect after about k =
√

2n events
to get a collision. Note

√
2 · 365 ≈ 27, a bit more than 23.

Note that (1 + α
t )t ≈ eα for large enough t. So setting k =

√
2n then

1− (1− 1/n)(
k
2) ≈ 1− (1− 1/n)n ≈ 1− e−1 ≈ .63

This is not exactly 1/2, and we used a bunch of ≈ tricks, but it shows roughly what happens.

2



• This is pretty accurate. Note for n = 365 and k = 18 then

1− (1− 1/n)(
k
2) = 1− (364/365)153 ≈ .34

and when k = 28 then
1− (1− 1/n)(

k
2) = 1− (364/365)378 ≈ .64.

This means that if you keep adding (random) people to the room, the first matching of birthdays
happens 28% of the time between the 18th and 28th person. When k = 50 people are in the room,
then

1− (1− 1/n)(
k
2) = 1− (364/365)1225 ≈ .965,

and so only about 3.5% percent of the time are there no pair with the same birthday.

2 Coupon Collectors

Lets now formalize the famous coupon lottery. There are n types of coupons, and we participate in a series
of independent trials, and on each trial we have equal probability (1/n) of getting each coupon. We want to
collect all toys available in a McDonald’s Happy Meal. How many trials (k) should we expect to partake in
before we collect all coupons?

Let ri be the expected number of trials we need to take before receiving exactly i distinct coupons. Let
r0 = 0, and set ti = ri − ri−1 to measure the expected number of trials between getting i − 1 distinct
coupons and i distinct coupons.

Clearly, r1 = t1 = 1, and it has no variance. Our first trials always yields a new coupon.
Then the expected number of trials to get all coupons is T =

∑n
i=1 ti.

To measure ti we will define pi as the probability that we get a new coupon after already having i − 1
distinct coupons. Thus ti = 1/pi. And pi = (n− i)/n.

We are now ready for some algebra:

T =

n∑
i=1

ti =

n−1∑
i=0

n

n− i
= n

n∑
i=1

1

i
.

Now we just need to bound the quantity
∑n

i=1(1/i). This is known at the nth Harmonic Number Hn. It
is known that Hn = γ + lnn+ o(1/n) where ln(·) is the natural log (that is ln e = 1) and γ ≈ 0.577 is the
Euler-Masheroni constant. Thus we need, in expectation,

k = T = nHn = n(γ + lnn)

trials to obtain all distinct coupons.

Extensions.

• What if some coupons are more likely than others. McDonalds offers three toys: Alvin, Simon, and
Theodore, and for every 10 toys, there are 6 Alvins, 3 Simons, and 1 Theodore. How many trials do
we expect before we collect them all?

In this case, there are n = 3 probabilities {p1 = 6/10, p2 = 3/10, p3 = 1/10} so that
∑n

i=1 = 1.

The analysis and tight bounds here is a bit more complicated, but the key insight is that it is dominated
by the smallest probability event. Let p∗ = mini pi. Then we need about

k ≈
(

1

p∗

)
(γ + lnn)

random trials to obtain all coupons.
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• These properties can be generalized to a family of events from a continuous domain. Here there can
be events with arbitrarily small probability of occurring, and so the number of trials we need to get
all events becomes arbitrarily large (following the above non-uniform analysis). So typically we set
some probability ε ∈ [0, 1]. (Typically we consider ε as something like {0.01, .001} so 1/ε something
like {100, 1000}. Now we want to consider any set of events with combined probability greater than
ε. (We can’t consider all such subsets, but we can restrict to all, say, contiguous sets – intervals if the
events have a natural ordering). Then we need

k ≈ 1

ε
log

1

ε

random trials to have at least one random trial in any subset with probability at least ε. Such a set is
called an ε-net.

Take away message.

• It takes about n lnn trials to get all items at random from a set of size n, not n. That is we need an
extra about lnn factor to guarantee we hit all events.

• When probability are not equal, then it is the smallest probability item that dominates everything!

• To hit all regions of size εn we need about (1/ε) log(1/ε) samples, even if they can be covered by
1/ε items.

3 ε-Samples

The goal here is to obtain a random sample large enough from [n] so that all elements have about the same
number of occurrences. This is a bit trickier to formalize since what does “about the same number” mean?

Let Sk be the set of k random samples from [n]. Let fi represent the number of trials in Sk that have value
i. Clearly after k trials, the expected value E[fi] = k/n for each i.

For instance, let

Wk = max
i

∣∣∣∣fi − k

n

∣∣∣∣ .
It turns out, that as k increases, in expectation, Wk grows. This suggests we are best setting k = 0. But then
this sample is useless, it tells us nothing!

A better error notion is

Zk = max
i

∣∣∣∣f̃i − 1

n

∣∣∣∣ ,
where f̃i = fi/k, and 1/n represents the expected value of f̃i, that is, fraction of elements expected to have
value i. Now Zk decreases as k increases. And for some small parameter ε ∈ [0, 1], if Zk ≤ ε, then we say
Sk is an ε-sample (we will introduce a more general definition later).

So, how large does k need to be for Sk to be an ε-sample? The answer:

k ≈ 1/ε2

Note, this is independent of n. We can set ε = c/n, so Zk < c/n andWk < c, and then we need k ≈ n2/c2.
Note for c ≥ 1 this is a bit silly again, since this holds for k = 0. But when c = .1 or so, this make sense,
and we need about k ≈ 100n2 samples to achieve this bound.
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Extensions.

• This naturally extends to when elements i ∈ [n] have non-uniform probabilities of being sampled.
Then

Zk = max
i

∣∣∣f̃i − pi∣∣∣ ,
where pi is the probability that i is sampled in a random trial. Again, we need k ≈ 1/ε2 for Sk to be
expected to be an ε-sample.

• Like with the coupon collector extension to ε-nets, this generalizes directly to continuous domains.
Now for a continuous ordered domain, we can consider the fraction of samples that fall in any interval
versus the expected number (do we approximate the density accurately?). For the error to be within ε
for all intervals, we again need k ≈ 1/ε2 samples, in expectation.

This generalizes again to more abstract domains through the concept of VC-dimension ν, where we
need about k ≈ (ν/2)/ε2 samples. This includes higher-dimensional domains (say Rd), where balls,
axis-aligned rectangles, and half spaces all require about k ≈ (d/2)/ε2 samples.

Note that the analysis for this is easy for showing any single index i ∈ [n] has at most ε error after
1/ε2 samples (as we will see next). It requires fair bit of extra analysis to show this for all indices, or
all intervals.

• Other error metrics can also be considered such as the average error, or average squared error (as
opposed to the worst case error we consider). But about the same number of samples (k ≈ 1/ε2) are
still needed to achieve ε error bounds.

Take away message.

• Requires sample of size about k ≈ 1/ε2 to achieve an ε-sample (or about k ≈ n2 samples if we
require constant amount of absolute error).

• This generalizes to any simple enough range (e.g. interval) of values, even in a continuous setting.

• Need to be careful in how to define “smoothness” of a distribution, but most reasonable measures
require about the same number of samples to achieve “smoothness.”

4 Tail Bounds

Up until now, we have looked at expected values on these phenomenon. But often we want to ensure that
the probability of these phenomenon occurring approaches 1. We will use two tools: the Markov Inequality,
and the Chernoff-Hoeffding inequality.

Markov inequality. Consider a random variable X such that all possible values of X are non-negative,
then

Pr[X > α] ≤ E[X]

α
.

This is not too hard to see. Consider if this was not true, and Pr[X > α] > E[X]/α. Let γ = Pr[X > α].
Then, since X > 0, we need to make sure the expected value of X does not get too large. So, let the
instances of X from the probability distribution of its values which are less than E[X]/α be as small as
possible, namely 0. Then we can still reach a contradiction:

E[X] ≥ (1− γ)0 + (γ)α = γα >
E[X]

α
α = E[X].
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Chernoff-Hoeffding inequalities. This is a much stronger inequality, but is basically, just an extension
of the Markov inequality. There are many different forms that are easily translated between. I will state
several of them (from general to specific), so hopefully it is easy to find the one that fits best.

[CH1] Consider a set of r independent random variables {X1, . . . , Xr} such that ai ≤ Xi ≤ bi for each
i ∈ [r]. Let ∆i = bi − ai. Let M =

∑r
i=1Xi (a sum of Xis). Then

Pr[|M − E[M ]| > α] ≤ 2 exp

(
−2α2∑r
i=1 ∆2

i

)
.

[CH2] Consider a set of r independent random variables {X1, . . . , Xr} such that ai ≤ Xi ≤ bi for each
i ∈ [r]. Let ∆i = bi − ai. Let A = 1

r

∑r
i=1Xi (an average of Xis). Then

Pr[|A− E[A]| > α] ≤ 2 exp

(
−2α2r2∑r
i=1 ∆2

i

)
.

[CH3] Consider a set of r independent random variables {X1, . . . , Xr} such that −∆i ≤ Xi ≤ ∆i for each
i ∈ [r]. Let A = 1

r

∑r
i=1Xi (an average of Xis) and E[A] = 0. Then

Pr[|A| > α] ≤ 2 exp

(
−α2r2

2
∑r

i=1 ∆2
i

)
.

[CH4] Consider a set of r independent identically distributed (iid) random variables {X1, . . . , Xr} such that
−∆ ≤ Xi ≤ ∆ and E[Xi] = 0 for each i ∈ [r]. Let A = 1

r

∑r
i=1Xi (an average of Xis) and

E[A] = 0. Then

Pr[|A| > α] ≤ 2 exp

(
−α2r

2∆2

)
.

[CH5] Consider a set of r independent identically distributed (iid) random variables {X1, . . . , Xr} such that
−∆ ≤ Xi ≤ ∆ for each i ∈ [r]. Let M =

∑r
i=1Xi (a sum of Xis). Then

Pr[|M − E[M ]| > α] ≤ 2 exp

(
−α2

2r∆2

)
.

To prove these bounds we adapt the Markov bound to see for any t > 0

Pr[M > α] = Pr[exp(tM) > exp(tα)] ≤ E[exp(tM)]

exp(tα)
=

∏r
i=1 E[exp(tXi)]

exp(tα)
.

The setting t appropriately (separately for two cases: when M > 0 and when M < 0), yields the desired
bounds. We will omit these long tedious details here.

4.1 Proving ε-Sample Bounds

One use of the Chernoff-Hoeffding inequality is to prove a weaker form of the main result for ε-samples.
We consider the number of random trials we expect to see with index i ∈ [n].

Here we have k random variables {X1, . . . , Xk}, one for each random trial. We have Xj = 1 if the jth
trial chooses an element i ∈ [n], and Yj = 0 otherwise. We note that ∆i = 1 since each Xi is in [0, 1] with
ai = 0 and bi = 1.
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It follows that M =
∑k

j=1Xj is the number of random trials with index i, and A = M/k = 1
k

∑k
j=1Xj

is the fraction of random trials with index i. That is f̃i = A and fi = M in this context; E[A] = k/n. So
setting α = ε we can apply the Chernoff-Hoeffding bound ([CH2]), for some parameter δ ∈ (0, 1), to say:

Pr

[∣∣∣∣f̃i − k

n

∣∣∣∣ > ε

]
= Pr[|A− E[A]| > ε] ≤ 2 exp

(
−2α2k2∑k
j=1 ∆2

i

)
= 2 exp

(
−2ε2k

)
≤ δ.

Solving for k in terms of ε and δ yields:

k ≥ 2

ε2
ln

2

δ
.

Note that this applies only for a single index i. We want this to be true for all indices at the same time
with the same probability of failure δ. For this we need another probabilistic trick: the union bound.

The Union Bound. Consider t random variables {Z1, . . . , Zt} where each random variable Zi is 1 with
probability pi, and is 0 with probability qi = 1 − pi. Then all random variables are 1 with probability
p ≥ 1−

∑t
i=1 qi.

The key is to add the probability of failures, and subtract this from 1 to lower bound the probability they
are all 1.

Lets apply this to our ε-sample result for one index i to see how the bound on k changes to get 1 −
δ probability of having at most ε error on all indices. There are n indices and lets say we select k =
(2/ε2) ln(2/δ′) samples total, so each index is correct with probability at least 1 − δ′. Thus, each index
has more than ε error with probability at most δ′. Thus no index has probability of failure more than nδ′.
Solving for all indices having at most ε error with probability at least 1− δ requires setting 1− δ = 1−nδ′,
and yields δ′ = δ/n and

k =
2

ε2
ln

2n

δ
.

Note we now have a factor of n in the number of samples we need, but at least it is wrapped inside of a ln(·)
term, so its effect is pretty small.

It is possible to completely remove the ln(n) term from this bound (yielding the ε-sample result stated
above), but it is a considerably more complicated. The most common approach uses a clever form a negative
dependence. Note that two indices are not independent, but if one is close to expected value, then all others
are just as likely (and in fact) more likely to be close to their expected value.
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