A set is a collection of unique objects.
Sets

Definition

A **set** is a collection of unique objects.

Here “objects” can be concrete things (people in class, schools in PAC-12), or abstract things (numbers, colors).
Sets

Definition

A **set** is a collection of unique objects.

Here “objects” can be concrete things (people in class, schools in PAC-12), or abstract things (numbers, colors).

Examples:

\[A = \{3, 8, 31\} \]
Sets

Definition
A set is a collection of unique objects.

Here “objects” can be concrete things (people in class, schools in PAC-12), or abstract things (numbers, colors).

Examples:

\[A = \{3, 8, 31\} \]
\[B = \{\text{apple, pear, orange, grape}\} \]
Sets

Definition
A set is a collection of unique objects.

Here “objects” can be concrete things (people in class, schools in PAC-12), or abstract things (numbers, colors).

Examples:

\[A = \{3, 8, 31\} \]
\[B = \{\text{apple, pear, orange, grape}\} \]
Not a valid set definition: \[C = \{1, 2, 3, 4, 2\} \]
Sets

- Order in a set does not matter!

\[\{1, 2, 3\} = \{3, 1, 2\} = \{1, 3, 2\} \]
Sets

- Order in a set does not matter!

\[\{1, 2, 3\} = \{3, 1, 2\} = \{1, 3, 2\} \]

- When \(x \) is an element of \(A \), we denote this by:

\[x \in A. \]
Sets

- Order in a set does not matter!
 \[\{1, 2, 3\} = \{3, 1, 2\} = \{1, 3, 2\} \]

- When \(x \) is an element of \(A \), we denote this by:
 \[x \in A \]

- If \(x \) is not in a set \(A \), we denote this as:
 \[x \notin A \]
Sets

- Order in a set does not matter!
 \[\{1, 2, 3\} = \{3, 1, 2\} = \{1, 3, 2\} \]
- When \(x \) is an element of \(A \), we denote this by:
 \[x \in A. \]
- If \(x \) is not in a set \(A \), we denote this as:
 \[x \notin A. \]
- The “empty” or “null” set has no elements:
 \[\emptyset = \{\} \]
Some Important Sets

- **Integers:**
 \[\mathbb{Z} = \{ \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \} \]
Some Important Sets

- **Integers:**

 \[\mathbb{Z} = \{ \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \} \]

- **Natural Numbers:**

 \[\mathbb{N} = \{ 0, 1, 2, 3, \ldots \} \]
Some Important Sets

- **Integers:**
 \[\mathbb{Z} = \{ \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \} \]

- **Natural Numbers:**
 \[\mathbb{N} = \{ 0, 1, 2, 3, \ldots \} \]

- **Real Numbers:**
 \[\mathbb{R} = \text{“any number that can be written in decimal form”} \]
Some Important Sets

- **Integers:**
 \[\mathbb{Z} = \{ \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \} \]

- **Natural Numbers:**
 \[\mathbb{N} = \{ 0, 1, 2, 3, \ldots \} \]

- **Real Numbers:**
 \[\mathbb{R} = \text{“any number that can be written in decimal form”} \]
 \[5 \in \mathbb{R}, \quad 17.42 \in \mathbb{R}, \quad \pi = 3.14159\ldots \in \mathbb{R} \]
Building Sets Using Conditionals

- Alternate way to define natural numbers:
 \[N = \{ x \in \mathbb{Z} : x \geq 0 \} \]

- Set of even integers:
 \[\{ x \in \mathbb{Z} : x \text{ is divisible by } 2 \} \]

- Rationals:
 \[\mathbb{Q} = \{ p/q : p, q \in \mathbb{Z}, q \neq 0 \} \]
Building Sets Using Conditionals

- Alternate way to define natural numbers:

\[\mathbb{N} = \{ x \in \mathbb{Z} : x \geq 0 \} \]
Building Sets Using Conditionals

- Alternate way to define natural numbers:
 \[\mathbb{N} = \{ x \in \mathbb{Z} : x \geq 0 \} \]

- Set of even integers:
 \[\{ x \in \mathbb{Z} : x \text{ is divisible by } 2 \} \]
Building Sets Using Conditionals

- Alternate way to define natural numbers:
 \[\mathbb{N} = \{ x \in \mathbb{Z} : x \geq 0 \} \]

- Set of even integers:
 \[\{ x \in \mathbb{Z} : x \text{ is divisible by } 2 \} \]

- Rationals:
 \[\mathbb{Q} = \{ p/q : p, q \in \mathbb{Z}, q \neq 0 \} \]
Subsets

Definition
A set A is a **subset** of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Examples:
- $\{1, 9\} \subseteq \{1, 3, 9, 11\}$
- $\mathbb{Q} \subseteq \mathbb{R}$
- $\{\text{apple, pear}\} \nsubseteq \{\text{apple, orange, banana}\}$
- $\emptyset \subseteq A$ for any set A
- $A \subseteq A$ for any set A (but $A \nsubset A$)
Subsets

Definition

A set A is a **subset** of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Examples:

- $\{1, 9\} \subseteq \{1, 3, 9, 11\}$
- $\mathbb{Q} \subseteq \mathbb{R}$
- $\{\text{apple, pear}\} \not\subseteq \{\text{apple, orange, banana}\}$
- $\emptyset \subseteq A$ for any set A
- $A \subseteq A$ for any set A (but $A \not\subset A$)
Subsets

Definition
A set A is a **subset** of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Examples:
- $\{1, 9\} \subseteq \{1, 3, 9, 11\}$
- $\mathbb{Q} \subseteq \mathbb{R}$
- $\{\text{apple, pear}\} \not\subseteq \{\text{apple, orange, banana}\}$
- $\emptyset \subseteq \mathbf{A}$ for any set \mathbf{A}
- $A \subseteq A$ for any set A (but $A \not\subset A$)
Subsets

Definition

A set A is a **subset** of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Examples:

- $\{1, 9\} \subseteq \{1, 3, 9, 11\}$
- $\mathbb{Q} \subseteq \mathbb{R}$
Subsets

Definition
A set A is a **subset** of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Examples:
- $\{1, 9\} \subseteq \{1, 3, 9, 11\}$
- $\mathbb{Q} \subseteq \mathbb{R}$
- $\{\text{apple, pear}\} \not\subseteq \{\text{apple, orange, banana}\}$
Subsets

Definition

A set A is a **subset** of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Examples:

- $\{1, 9\} \subseteq \{1, 3, 9, 11\}$
- $\mathbb{Q} \subseteq \mathbb{R}$
- $\{\text{apple, pear}\} \not\subseteq \{\text{apple, orange, banana}\}$
- $\emptyset \subseteq A$ for any set A
Subsets

Definition
A set A is a **subset** of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Examples:
- $\{1, 9\} \subseteq \{1, 3, 9, 11\}$
- $\mathbb{Q} \subseteq \mathbb{R}$
- $\{\text{apple, pear}\} \not\subseteq \{\text{apple, orange, banana}\}$
- $\emptyset \subseteq A$ for any set A
- $A \subseteq A$ for any set A (but $A \not\subset A$)
A \textbf{sample space} is the set of all possible outcomes of an experiment. We’ll denote a sample space as Ω.

Examples:

- **Coin flip:** $\Omega = \{H, T\}$
- **Roll a 6-sided die:** $\Omega = \{1, 2, 3, 4, 5, 6\}$
- **Pick a ball from a bucket of red/black balls:** $\Omega = \{R, B\}$
- **Tossing 2 coins?**
- **Shuffling deck of 52 cards?**
Sample Spaces

Definition

A **sample space** is the set of all possible outcomes of an experiment. We’ll denote a sample space as Ω.

Examples:

- Coin flip: $\Omega = \{H, T\}$
Sample Spaces

Definition

A **sample space** is the set of all possible outcomes of an experiment. We’ll denote a sample space as Ω.

Examples:

- Coin flip: $\Omega = \{H, T\}$
- Roll a 6-sided die: $\Omega = \{1, 2, 3, 4, 5, 6\}$
Definition

A **sample space** is the set of all possible outcomes of an experiment. We’ll denote a sample space as \(\Omega \).

Examples:

- Coin flip: \(\Omega = \{H, T\} \)
- Roll a 6-sided die: \(\Omega = \{1, 2, 3, 4, 5, 6\} \)
- Pick a ball from a bucket of red/black balls: \(\Omega = \{R, B\} \)
Sample Spaces

Definition

A **sample space** is the set of all possible outcomes of an experiment. We’ll denote a sample space as Ω.

Examples:

- Coin flip: $\Omega = \{H, T\}$
- Roll a 6-sided die: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Pick a ball from a bucket of red/black balls: $\Omega = \{R, B\}$
- Tossing 2 coins?
Sample Spaces

Definition

A **sample space** is the set of all possible outcomes of an experiment. We’ll denote a sample space as Ω.

Examples:

- Coin flip: $\Omega = \{H, T\}$
- Roll a 6-sided die: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Pick a ball from a bucket of red/black balls: $\Omega = \{R, B\}$
- Tossing 2 coins?
- Shuffling deck of 52 cards?
Events

Definition

An *event* is a subset of a sample space.
Events

Definition

An **event** is a subset of a sample space.

Examples:

- You roll a die and get an even number:
 \[\{2, 4, 6\} \subseteq \{1, 2, 3, 4, 5, 6\} \]

- You flip a coin and it comes up "heads":
 \[\{H\} \subseteq \{H, T\} \]

- Your code takes longer than 5 seconds to run:
 \((5, \infty) \subseteq \mathbb{R} \)
Events

Definition
An **event** is a subset of a sample space.

Examples:
- You roll a die and get an even number:
 \[\{2, 4, 6\} \subseteq \{1, 2, 3, 4, 5, 6\} \]
- You flip a coin and it comes up “heads”:
 \[\{H\} \subseteq \{H, T\} \]
Events

Definition
An event is a subset of a sample space.

Examples:
- You roll a die and get an even number:
 \(\{2, 4, 6\} \subseteq \{1, 2, 3, 4, 5, 6\} \)
- You flip a coin and it comes up “heads”:
 \(\{H\} \subseteq \{H, T\} \)
- Your code takes longer than 5 seconds to run:
 \((5, \infty) \subseteq \mathbb{R} \)
Set Operations: Union

Definition

The **union** of two sets A and B, denoted $A \cup B$ is the set of all elements in either A or B (or both).

Example:

$A = \{1, 3, 5\}$ “an odd roll”

$B = \{1, 2, 3\}$ “a roll of 3 or less”

$A \cup B = \{1, 2, 3, 5\}$
Set Operations: Union

Definition

The **union** of two sets A and B, denoted $A \cup B$ is the set of all elements in either A or B (or both).

When A and B are events, $A \cup B$ means that event A or event B happens (or both).
Set Operations: Union

Definition

The **union** of two sets A and B, denoted $A \cup B$ is the set of all elements in either A or B (or both).

When A and B are events, $A \cup B$ means that event A or event B happens (or both).

Example:

$A = \{1, 3, 5\}$ \hspace{1cm} “an odd roll”

$B = \{1, 2, 3\}$ \hspace{1cm} “a roll of 3 or less”
Set Operations: Union

Definition
The **union** of two sets A and B, denoted $A \cup B$ is the set of all elements in either A or B (or both).

When A and B are events, $A \cup B$ means that event A or event B happens (or both).

Example:

$A = \{1, 3, 5\}$
“an odd roll”

$B = \{1, 2, 3\}$
“a roll of 3 or less”

$A \cup B = \{1, 2, 3, 5\}$
Definition

The **intersection** of two sets A and B, denoted $A \cap B$ is the set of all elements in both A and B.

Example:

$A = \{1, 3, 5\}$ "an odd roll"

$B = \{1, 2, 3\}$ "a roll of 3 or less"

$A \cap B = \{1, 3\}$
Set Operations: Intersection

Definition

The **intersection** of two sets A and B, denoted $A \cap B$ is the set of all elements in both A and B.

When A and B are events, $A \cap B$ means that both event A and event B happen.

Example:

$A = \{1, 3, 5\}$ "an odd roll"

$B = \{1, 2, 3\}$ "a roll of 3 or less"

$A \cap B = \{1, 3\}$
Set Operations: Intersection

Definition

The **intersection** of two sets A and B, denoted $A \cap B$ is the set of all elements in both A and B.

When A and B are events, $A \cap B$ means that both event A and event B happen.

Example:

- $A = \{1, 3, 5\}$
 “an odd roll”
- $B = \{1, 2, 3\}$
 “a roll of 3 or less”
Set Operations: Intersection

Definition

The intersection of two sets A and B, denoted $A \cap B$ is the set of all elements in both A and B.

When A and B are events, $A \cap B$ means that both event A and event B happen.

Example:

$A = \{1, 3, 5\}$
“an odd roll”

$B = \{1, 2, 3\}$
“a roll of 3 or less”

$A \cap B = \{1, 3\}$
Set Operations: Intersection

Definition
The **intersection** of two sets A and B, denoted $A \cap B$ is the set of all elements in both A and B.

When A and B are events, $A \cap B$ means that both event A and event B happen.

Example:

$A = \{1, 3, 5\}$
“an odd roll”

$B = \{1, 2, 3\}$
“a roll of 3 or less”

$A \cap B = \{1, 3\}$

Note: If $A \cap B = \emptyset$, we say A and B are **disjoint**.
Set Operations: Complement

| Definition | The complement of a set $A \subseteq \Omega$, denoted A^c, is the set of all elements in Ω that are not in A. |

Example:

- $A = \{1, 3, 5\}$, “an odd roll”
- $A^c = \{2, 4, 6\}$, “an even roll”
Set Operations: Complement

Definition

The complement of a set $A \subseteq \Omega$, denoted A^c, is the set of all elements in Ω that are not in A.

When A is an event, A^c means that the event A does not happen.
Set Operations: Complement

Definition

The complement of a set $A \subseteq \Omega$, denoted A^c, is the set of all elements in Ω that are not in A.

When A is an event, A^c means that the event A does not happen.

Example:

$A = \{1, 3, 5\}$ “an odd roll”
Set Operations: Complement

Definition

The **complement** of a set $A \subseteq \Omega$, denoted A^c, is the set of all elements in Ω that are not in A.

When A is an event, A^c means that the event A does not happen.

Example:

$A = \{1, 3, 5\}$ “an odd roll”

$A^c = \{2, 4, 6\}$ “an even roll”
Set Operations: Difference

Definition

The **difference** of a set $A \subseteq \Omega$ and a set $B \subseteq \Omega$, denoted $A - B$, is the set of all elements in Ω that are in A and are not in B.

Example:

$A = \{3, 4, 5, 6\}$

$B = \{3, 5\}$

$A - B = \{4, 6\}$

Note: $A - B = A \cap B^c$
DeMorgan’s Law

Complement of union or intersection:

\[
(A \cup B)^c = A^c \cap B^c
\]

\[
(A \cap B)^c = A^c \cup B^c
\]
DeMorgan’s Law

Complement of union or intersection:

\[(A \cup B)^c = A^c \cap B^c\]

\[(A \cap B)^c = A^c \cup B^c\]

What is the English translation for both sides of the equations above?
Exercises

Check whether the following statements are true or false.
(Hint: you might use Venn diagrams.)

- $A - B \subseteq A$
- $(A - B)^c = A^c \cup B$
- $A \cup B \subseteq B$
- $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
Probability

Definition

A **probability function** on a finite sample space \(\Omega \) assigns every event \(A \subseteq \Omega \) a number in \([0, 1]\), such that

1. \(P(\Omega) = 1 \)
2. \(P(A \cup B) = P(A) + P(B) \) when \(A \cap B = \emptyset \)

\(P(A) \) is the **probability** that event \(A \) occurs.
Equally Likely Outcomes

The number of elements in a set A is denoted $|A|$.

Example: Rolling a 6-sided die

$P(\{1\}) = \frac{1}{6}$

$P(\{1, 2, 3\}) = \frac{1}{2}$
Equally Likely Outcomes

The number of elements in a set A is denoted $|A|$.

If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$P(A) = \frac{|A|}{|\Omega|}$$
Equally Likely Outcomes

The number of elements in a set A is denoted $|A|$. If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$P(A) = \frac{|A|}{|\Omega|}$$

Example: Rolling a 6-sided die
The number of elements in a set A is denoted $|A|$. If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$P(A) = \frac{|A|}{|\Omega|}$$

Example: Rolling a 6-sided die

- $P(\{1\}) = \frac{1}{6}$
Equally Likely Outcomes

The number of elements in a set A is denoted $|A|$.

If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$P(A) = \frac{|A|}{|\Omega|}$$

Example: Rolling a 6-sided die

- $P(\{1\}) = \frac{1}{6}$
- $P(\{1, 2, 3\}) = \frac{1}{2}$
Repeated Experiments

If we do two runs of an experiment with sample space Ω, then we get a new experiment with sample space

$$\Omega \times \Omega = \{(x, y) : x \in \Omega, y \in \Omega\}$$
Repeated Experiments

If we do two runs of an experiment with sample space \(\Omega \), then we get a new experiment with sample space

\[
\Omega \times \Omega = \{(x, y) : x \in \Omega, y \in \Omega\}
\]

The element \((x, y) \in \Omega \times \Omega\) is called an **ordered pair**.
Repeated Experiments

If we do two runs of an experiment with sample space Ω, then we get a new experiment with sample space

$$\Omega \times \Omega = \{(x, y) : x \in \Omega, y \in \Omega\}$$

The element $(x, y) \in \Omega \times \Omega$ is called an ordered pair.

Properties:
Order matters: $(1, 2) \neq (2, 1)$
Repeats are possible: $(1, 1) \in \mathbb{N} \times \mathbb{N}$
More Repeats

Repeating an experiment n times gives the sample space

$$\Omega^n = \Omega \times \cdots \times \Omega \quad (n \text{ times})$$

$$= \{(x_1, x_2, \ldots, x_n) : x_i \in \Omega \text{ for all } i\}$$
Repeating an experiment n times gives the sample space

$$\Omega^n = \Omega \times \cdots \times \Omega \ (n \text{ times})$$

$$= \{(x_1, x_2, \ldots, x_n) : x_i \in \Omega \text{ for all } i\}$$

The element (x_1, x_2, \ldots, x_n) is called an n-tuple.
More Repeats

Repeating an experiment \(n \) times gives the sample space

\[
\Omega^n = \Omega \times \cdots \times \Omega \quad (n \text{ times})
\]

\[
= \{(x_1, x_2, \ldots, x_n) : x_i \in \Omega \text{ for all } i\}
\]

The element \((x_1, x_2, \ldots, x_n)\) is called an \textbf{n-tuple}.

If \(|\Omega| = k\), then \(|\Omega^n| = k^n\).
Probability Rules

Complement of an event A

\[P(A^c) = 1 - P(A) \]

Union of two overlapping events $A \cap B \neq \emptyset$

\[P(A \cup B) = P(A) + P(B) - P(A \cap B) \]
Probability Rules

Complement of an event A:

$$P(A^c) = 1 - P(A)$$
Complement of an event A:

$$P(A^c) = 1 - P(A)$$

Union of two overlapping events $A \cap B \neq \emptyset$:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
Exercise

You are picking a number out of a hat, which contains the numbers 1 through 100. What are the following events and their probabilities?

- The number has a single digit
- The number has two digits
- The number is a multiple of 4
- The number is not a multiple of 4
- The sum of the number’s digits is 5
Permutations

A permutation is an ordering of an n-tuple. For instance, the n-tuple $(1, 2, 3)$ has the following permutations:

$$(1, 2, 3), (1, 3, 2), (2, 1, 3)$$

$$(2, 3, 1), (3, 1, 2), (3, 2, 1)$$

The number of unique orderings of an n-tuple is n factorial:

$$n! = n \times (n-1) \times (n-2) \times \cdots \times 2$$
A permutation is an ordering of an n-tuple. For instance, the n-tuple $(1, 2, 3)$ has the following permutations:

$$(1, 2, 3), (1, 3, 2), (2, 1, 3)$$
$$(2, 3, 1), (3, 1, 2), (3, 2, 1)$$

The number of unique orderings of an n-tuple is n factorial:

$$n! = n \times (n - 1) \times (n - 2) \times \cdots \times 2$$
Permutations

A permutation is an ordering of an \(n \)-tuple. For instance, the \(n \)-tuple \((1, 2, 3)\) has the following permutations:

\[(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)\]

The number of unique orderings of an \(n \)-tuple is \(n \) factorial:

\[n! = n \times (n - 1) \times (n - 2) \times \cdots \times 2\]

How many ways can you rearrange \((1, 2, 3, 4)\)?