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Commutative Law

For two sets A,B the Commutative Law holds that

A [ B = B [ A

A \ B = A \ BB A

A 1B =BrA

A -B =B-A



Associative Law

For three sets A,B,C the Associative Law holds that

(A [ B) [ C = A [ (B [ C)

(A \ B) \ C = A \ (B \ C)

Example:
A = {3, 4, 5, 6}
B = {1, 3, 6}
C = {3, 5}
What is (A [ B) [ C?
What is (A \ B) \ C?
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Distributive Law

For three sets A,B,C the Distributive Law holds that

(A [ B) \ C = (A \ C) [ (B \ C)

(A \ B) [ C = (A [ C) \ (B [ C)

Example:
A = {3, 4, 5, 6}
B = {1, 3, 6}
C = {3, 5}
What is (A [ B) \ C?
What is (A \ B) [ C?
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DeMorgan’s Law

Complement of union or intersection:

(A [ B)c = Ac \ Bc

(A \ B)c = Ac [ Bc

What is the English translation for both sides of the
equations above?
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DeMorgan’s Law

Complement of union or intersection:
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If something is notinAandB

then it either not in A or not inB.



Exercises

Check whether the following statements are true or false.
(Hint: you might use Venn diagrams.)

I A � B ✓ A
I (A � B)c = Ac [ B
I A [ B ✓ B
I (A [ B) \ C = (A \ C) [ (B \ C)

True

Tro

Not always,unless*B
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(A- B =BC' => AoB
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Probability

Definition
A probability function on a finite sample space ⌦
assigns every event A ✓ ⌦ a number in [0, 1], such that

1. P(⌦) = 1
2. P(A [ B) = P(A) + P(B) when A \ B = ;

P(A) is the probability that event A occurs.

p:4A =23 - [a,1]
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Equally Likely Outcomes

The number of elements in a set A is denoted |A|.

If ⌦ has a finite number of elements, and each is equally
likely, then the probability function is given by

P(A) =
|A|
|⌦|

Example: Rolling a 6-sided die

I P({1}) = 1/6
I P({1, 2, 3}) = 1/2

cardinalityof A:1Al

"size 05

# elements in A
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Equally Likely Outcomes

The number of elements in a set A is denoted |A|.

If ⌦ has a finite number of elements, and each is equally
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Repeated Experiments

If we do two runs of an experiment with sample space ⌦,
then we get a new experiment with sample space

⌦⇥ ⌦ = {(x, y) : x 2 ⌦, y 2 ⌦}

The element (x, y) 2 ⌦⇥ ⌦ is called an ordered pair.

Properties:
Order matters: (1, 2) 6= (2, 1)
Repeats are possible: (1, 1) 2 N⇥ N
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More Repeats

Repeating an experiment n times gives the sample
space

⌦n = ⌦⇥ · · ·⇥ ⌦ (n times)

= {(x1, x2, . . . , xn) : xi 2 ⌦ for all i}

The element (x1, x2, . . . , xn) is called an n-tuple.

If |⌦| = k, then |⌦n| = kn.

d
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Probability Rules

Complement of an event A:

P(Ac) = 1 � P(A)

Union of two overlapping events A \ B 6= ;:

P(A [ B) = P(A) + P(B)� P(A \ B)
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Exercise

You are picking a number out of a hat, which contains
the numbers 1 through 100. What are the following
events and their probabilities?

I The number has a single digit
I The number has two digits
I The number is a multiple of 4
I The number is not a multiple of 4
I The sum of the number’s digits is 5

9/00

#
-

5 =E
=z5=E100

= = I =Pr(A) =
1-Pr(A)

Foo =23.33,413.e =3
-1



Permutations

A permutation is an ordering of an n-tuple. For instance,
the n-tuple (1, 2, 3) has the following permutations:

(1, 2, 3), (1, 3, 2), (2, 1, 3)
(2, 3, 1), (3, 1, 2), (3, 2, 1)

The number of unique orderings of an n-tuple is
n factorial:

n! = n ⇥ (n � 1)⇥ (n � 2)⇥ · · ·⇥ 2

How many ways can you rearrange (1, 2, 3, 4)?

decks of cards

finish order of race.

anagram dog-god
- ogd
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Exercise
Consider 4 balls in an urn, with labels A, B, C, and D.
Consider I select them out of the urn (without
replacement) one at a time.

I What is the probability I pick them out in order
(A,B,C,D)?

I What is the probability I pick them out in order
(B,C,A,D)?

I What is the probability that the last element chosen
is A?

I What is the probability that the last element chosen
is D?

=>Tr<..) ="z =41
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