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Parameters of a Distribution. All of the distributions that we have discussed come with a set of parameters
that fully describe the equation for the pdf (or pmf). For example, a Normal random variable,X ∼ N(µ, σ2),
has the mean µ and variance σ2 as parameters. An exponential random variable, X ∼ Exp(λ), has the rate
λ as its only parameter. A Bernoulli random variable, X ∼ Ber(p), has the probability of success, p, as its
only parameter. It’s important to remember that these parameters are constants.

Notation: When we want to make a generic statement about distributions and parameters, it is customary to
use the Greek letter θ to denote a parameter.

Estimation of a Distribution’s Parameters. We have talked about making assumptions that our data comes
from a particular distribution. For example, if we believe that our data is the summation of many small ran-
dom effects, we can argue that it probably comes from a Normal distribution as a result of the Central Limit
Theorem (CLT). Sometimes we just have to make a modeling decision, that is, we must decide to model our
data with a particular type of distribution. This might be as simple as looking at a histogram of our data and
saying “I think that an exponential distribution will fit this.”

Once we have decided what type of distribution to use, the next question is: what are the parameters for
this distribution? For example, if we have chosen to model our data using a Normal (maybe based on a
CLT argument), we still have an infinite number of Normal distributions to choose from because there are
an infinite number of µ and σ2 parameters that will give rise to different Normals! Now, we could make
further assumptions about the distribution and pick particular values for µ and σ2. However, this modeling
decision starts to feel too restrictive and is much harder to justify. Fortunately, we can use the data we have
collected to estimate these parameters. In the case of a Normal, the sample mean x̄n and variance s2n of our
data seem like reasonable choices to estimate the parameters µ and σ2.

Definition: Let X1, X2, . . . , Xn be iid random variables coming from a distribution with parameter θ. An
estimator of θ is a statistic θ̂ = T (X1, X2, . . . , Xn). Note: the “hat” notation is to indicate that we are
hoping to estimate a particular parameter. For instance, if we are trying to estimate the mean parameter µ of
a Normal, we might call our estimator µ̂.

Definition: The estimator θ̂ for a parameter θ is said to be unbiased if

E[θ̂] = θ.

The bias of θ̂ is how far the estimator is from being unbiased. It is defined by

bias(θ̂) = E[θ̂]− θ.

Example: Estimating the mean µ of a Normal. If we choose the sample mean as our estimator, i.e., µ̂ = X̄n,
we have already seen that this is an unbiased estimator:

E[X̄n] = E[Xi] = µ.
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Example: Estimating the variance σ2 of a Normal. If we choose the sample variance as our estimator, i.e.,
σ̂2 = S2

n, it becomes clear why the (n− 1) is in the denominator: it is there to make the estimator unbiased.
First, remember the formula Var(X) = E[X2]− E[X]2. Using this, we can show that

E[X2
i ] = Var(Xi) + E[X]2 = σ2 + µ2, and

E[X̄2
n] = Var(X̄n) + E[X̄n]2 =

σ2

n
+ µ2.

Also, notice that because the Xi are independent, we have Cov(Xi, Xj) = 0 if i 6= j. Thus, for i 6= j,

E[XiXj ] = Cov(Xi, Xj) + E[Xi]E[Xj ] = µ2.

Using this, we can compute

E
[
XiX̄n

]
= E

Xi
1

n

n∑
j=1

Xj

 =
1

n

n∑
j=1

E [XiXj ] =
σ2

n
+ µ2

Putting these all together, we get

E
[
S2
n

]
= E

[
1

n− 1

n∑
i=1

(Xi − X̄n)2

]

=
1

n− 1

n∑
i=1

E
[
X2

i − 2XiX̄n + X̄2
n

]
=

1

n− 1

n∑
i=1

(E
[
X2

i

]
− 2E

[
XiX̄n

]
+ E

[
X̄2

n

]
)

=
1

n− 1

n∑
i=1

(σ2 + µ2 − σ2

n
− µ2)

=
1

n− 1

n∑
i=1

n− 1

n
σ2 = σ2.

If we had put n in the denominator, we would have gotten

E

[
1

n

n∑
i=1

(Xi − X̄n)2

]
=
n− 1

n
σ2.

Example: Estimating the proportion parameter p for a Bernoulli distribution. If Xi are iid Ber(p) random
variables, then we know that E[Xi] = p. Therefore, the mean statistic also has E[X̄n] = p and is thus an
unbiased estimator of p.

It is possible that two estimates, θ̂1, θ̂2, of a parameter θ are both unbiased. How do we decide which is the
best to use? Well, we’d want the one that has the least amount of variability, that is, it is more likely to fall
close to the true answer. The estimator θ̂1 is said to be more efficient than θ̂2 if

Var(θ̂1) < Var(θ̂2).

2


