What is Probability and Statistics and Why Should You Care?

CS 3130: Probability and Statistics for Engineers

August 26, 2014

Definition

Probability theory is the study of the mathematical rules that govern random events.

Definition

Probability theory is the study of the mathematical rules that govern random events.

But what is randomness?

Definition

Probability theory is the study of the mathematical rules that govern random events.

But what is randomness?

Informally, a **random event** is an event in which we do not know the outcome without observing it.

Definition

Probability theory is the study of the mathematical rules that govern random events.

But what is randomness?

Informally, a **random event** is an event in which we do not know the outcome without observing it.

Probability tells us what we can say about such events, given our assumptions about the possible outcomes.

Definition

Statistics is the application of probability to the collection, analysis, and description of random data.

Definition

Statistics is the application of probability to the collection, analysis, and description of random data.

Statistics is used to:

Design experiments

Definition

Statistics is the application of probability to the collection, analysis, and description of random data.

Statistics is used to:

- Design experiments
- Summarize data

Definition

Statistics is the application of probability to the collection, analysis, and description of random data.

Statistics is used to:

- Design experiments
- Summarize data
- Make conclusions about the world

Definition

Statistics is the application of probability to the collection, analysis, and description of random data.

Statistics is used to:

- Design experiments
- Summarize data
- Make conclusions about the world
- **Explore** complex data

Computer Science:

Electrical Engineering:

Machine Learning

Computer Science:

- Machine Learning
- Data Mining

- Machine Learning
- Data Mining
- Artificial Intelligence

- Machine Learning
- Data Mining
- Artificial Intelligence
- Simulation

- Machine Learning
- Data Mining
- Artificial Intelligence
- Simulation
- Image Processing

- Machine Learning
- Data Mining
- Artificial Intelligence
- Simulation
- Image Processing
- Computer Graphics

- Machine Learning
- Data Mining
- Artificial Intelligence
- Simulation
- Image Processing
- Computer Graphics
- Visualization

- Machine Learning
- Data Mining
- Artificial Intelligence
- Simulation
- Image Processing
- Computer Graphics
- Visualization
- Software Testing

Computer Science:

- Electrical Engineering:
- Machine Learning
- Signal Processing

- Data Mining
- Artificial Intelligence
- Simulation
- Image Processing
- Computer Graphics
- Visualization
- Software Testing
- Algorithms

Computer Science:

- Machine Learning
- Data Mining
- Artificial Intelligence
- Simulation
- Image Processing
- Computer Graphics
- Visualization
- Software Testing
- Algorithms

- Signal Processing
- Telecommunications

Computer Science:

- Machine Learning
- Data Mining
- Artificial Intelligence
- Simulation
- Image Processing
- Computer Graphics
- Visualization
- Software Testing
- Algorithms

- Signal Processing
- Telecommunications
- Information Theory

Computer Science:

- Machine Learning
- Data Mining
- Artificial Intelligence
- Simulation
- Image Processing
- Computer Graphics
- Visualization
- Software Testing
- Algorithms

- Signal Processing
- Telecommunications
- Information Theory
- Control Theory

Computer Science:

- Machine Learning
- Data Mining
- Artificial Intelligence
- Simulation
- Image Processing
- Computer Graphics
- Visualization
- Software Testing
- Algorithms

- Signal Processing
- Telecommunications
- Information Theory
- Control Theory
- Instrumentation, Sensors

Computer Science:

- Machine Learning
- Data Mining
- Artificial Intelligence
- Simulation
- Image Processing
- Computer Graphics
- Visualization
- Software Testing
- Algorithms

- Signal Processing
- Telecommunications
- Information Theory
- Control Theory
- Instrumentation, Sensors
- Hardware/Electronics Testing

General:

Gambling

General:

Gambling (not recommended)

- Gambling (not recommended)
- Stock Market Analysis

- Gambling (not recommended)
- Stock Market Analysis
- Politics

- Gambling (not recommended)
- Stock Market Analysis
- Politics
- Sports

- Gambling (not recommended)
- Stock Market Analysis
- Politics
- Sports
- Demographics

- Gambling (not recommended)
- Stock Market Analysis
- Politics
- Sports
- Demographics
- Medicine

- Gambling (not recommended)
- Stock Market Analysis
- Politics
- Sports
- Demographics
- Medicine
- Economics

- Gambling (not recommended)
- Stock Market Analysis
- Politics
- Sports
- Demographics
- Medicine
- Economics
- All Sciences!!

"Father of Computer Science"

- "Father of Computer Science"
- Most famous for:
 - Computability, Turing machine
 - Stored-program computer
 - Turing test
 - WWII cryptanalysis

- "Father of Computer Science"
- Most famous for:
 - Computability, Turing machine
 - Stored-program computer
 - Turing test
 - WWII cryptanalysis
- Wrote a dissertation on probability theory!

- "Father of Computer Science"
- Most famous for:
 - Computability, Turing machine
 - Stored-program computer
 - Turing test
 - WWII cryptanalysis
- Wrote a dissertation on probability theory!
- Turing used probability and statistics to crack Enigma

Application: Machine Learning

Machine Learning builds statistical models of data in order to recognize complex patterns and to make decisions based on these observations.

Application: Machine Learning

Machine Learning builds statistical models of data in order to recognize complex patterns and to make decisions based on these observations.

Examples:

Classification (recognition of faces or handwriting)

Application: Machine Learning

Machine Learning builds statistical models of data in order to recognize complex patterns and to make decisions based on these observations.

Examples:

- Classification (recognition of faces or handwriting)
- Prediction (stock market, elections)

 Some algorithms benefit from using random steps rather than deterministic ones

- Some algorithms benefit from using random steps rather than deterministic ones
- Example: primality testing
 - Testing for all possible divisors is slow for large numbers
 - Instead test a random selection of divisors
 - Can be confident of primality up to a certain degree

- Some algorithms benefit from using random steps rather than deterministic ones
- Example: primality testing
 - Testing for all possible divisors is slow for large numbers
 - Instead test a random selection of divisors
 - Can be confident of primality up to a certain degree
- Example: stochastic optimization methods
 - Optimizations can get "stuck" in the wrong answer, depending on how they are initialized
 - Re-run the algorithm with several random initializations

Application: Computer Graphics

- Ray tracing models light photons bouncing around a scene
- Impossible to model every photon
- Monte Carlo ray tracing simulates a random selection of photons

Image by Steve Parker (U of U)

Application: Visualization

 Scientific data contains uncertainty

Application: Visualization

- Scientific data contains uncertainty
- Visualizations can be misleading as to "truth"

Application: Visualization

- Scientific data contains uncertainty
- Visualizations can be misleading as to "truth"
- Current research focuses on how to visualize uncertainty

Application: Medical Image Analysis

Must deal with noisy image data

Fletcher et al, Neurolmage, 2010

Application: Medical Image Analysis

- Must deal with noisy image data
- Example: finding an anatomical structure in a 3D image

Fletcher et al, Neurolmage, 2010

Application: Medical Image Analysis

- Must deal with noisy image data
- Example: finding an anatomical structure in a 3D image
- Often includes statistical analysis of resulting data

Fletcher et al, Neurolmage, 2010

"Big Data" and "Analytics"

The amount of digital data is exploding!

Source: IDC/EMC Digital Universe Study

"Big Data" and "Analytics"

- The amount of digital data is exploding!
- Big data analysis is statistics + scalable CS.

Source: IDC/EMC Digital Universe Study

"Big Data" and "Analytics"

- The amount of digital data is exploding!
- Big data analysis is statistics + scalable CS.
- Examples: social media, internet purchases, news articles, scientific data, medical data

Source: IDC/EMC Digital Universe Study

Sources: Lesk, Berkeley SIMS, Landauer, EMC, TechCrunch, Smart Planet (slide by Chris Johnson)

How Much is an Exabyte?

How many trees does it take to print out an Exabyte?

1 Exabyte = 1000 Petabytes = could hold approximately 500,000,000,000,000 pages of standard printed text

It takes one tree to produce 94,200 pages of a book

Thus it will take 530,785,562,327 trees to store an Exabyte of data

In 2005, there were **400,246,300,201** trees on Earth

We can store **.75** Exabytes of data using all the trees on the entire planet.

Sources: http://www.whatsabyte.com/ and http://wiki.answers.com (slide by Chris Johnson)

car insurance

Search tools

J Q

News

Mapa

Shopping

More +

About 203,000,000 results (0,46 seconds)

Allstate® Car Insurance - allstate.com M www.allstate.com/car-insurance/ ▼ (888) 458-6954

Drivers Who Switched Saved \$498/vr. Get a Car Insurance Quote Today! Ratings: Ease of purchase 9.5/10 - Policy selection 8.5/10 - Service 7.5/10 Allstate Insurance has 21,903 followers on Google+

Progressive Car Insurance - Progressive.com www.progressive.com/ *

3.9 **** rating for progressive.com Named #1 Car Insurance Website, Get A Free Online Quote Now. Ratings: Ease of purchase 9.5/10 - Policy selection 9/10

\$29 Cheap Car Insurance - Cheapest Utah Car Insurance

 utah.usautoinsurancenow.com/ ▼ Lowest Rates From \$28.99 / Month!

High Value Insurance - Minimum or Full Coverage - All Driving Records

Auto Insurance - State Farm® - State Farm Insurance https://www.statefarm.com/insurance/auto TState Farm Insurance T

Choosing the right auto insurance can be tough. State Farm® makes it easier with a fast online quote that helps you get car insurance discounts as you go. Coverage Options - Discounts - Safe Driver Program - Resources

Auto Insurance - Progressive

www.progressive.com/auto/ * Progressive Corporation * Get the coverage you need, for the price you want. Start a car insurance quote today with the details you know offhand.

Comparison Rates - Coverages - Cheap Car Insurance - Why Progressive

Auto Insurance & Car Insurance Quotes-Alistate www.alistate.com/auto-insurance.aspx * Alistate *

Customized car insurance coverage options, discounts galore and amazing features. Get a free online quote and speak to a dedicated Allstate agent.

Map for car insurance

GEICO Car Insurance

www.geico.com/ * 4.0 *** rating for geico.com

You could save over \$500. How much could you save?

Amica® Auto Insurance

www.amicacoverage.com/Car+Insurance * Official Car Insurance Quotes From Amica®, Available 24/7-Quote Today!

Nationwide® Car Insurance

www.nationwide.com/.loinTheNation.▼ Get a Free Online Quote Today! Join the Nation and Drive with Us.

21st Century Insurance www.21st.com/

Free Car Insurance Price Quote. See If You Could Save Hundreds.

Esurance Car Insurance www.esurance.com/Utah *

Same Big Discounts & Great Service.

1. Define the question

- 1. Define the question
- 2. Background research, observation

- Define the question
- 2. Background research, observation
- 3. Formulate a hypothesis

- Define the question
- 2. Background research, observation
- 3. Formulate a hypothesis
- 4. Design and run an experiment

- Define the question
- 2. Background research, observation
- 3. Formulate a hypothesis
- 4. Design and run an experiment
- 5. Analyze the results

- Define the question
- 2. Background research, observation
- 3. Formulate a hypothesis
- 4. Design and run an experiment
- 5. Analyze the results

Experimental measurements are noisy (randomness).

- 1. Define the question
- 2. Background research, observation
- 3. Formulate a hypothesis
- 4. Design and run an experiment
- 5. Analyze the results

Experimental measurements are noisy (randomness).

Statistics is critical in the last two steps!

1. Process/Squash enormous available data

- 1. Process/Squash enormous available data
- 2. Mine working data (calculate many statistics)

- 1. Process/Squash enormous available data
- 2. Mine working data (calculate many statistics)
- 3. Analyze the results / Draw conclusions

- 1. Process/Squash enormous available data
- 2. Mine working data (calculate many statistics)
- 3. Analyze the results / Draw conclusions

Every step is subject to noise and involves statistics.

- Process/Squash enormous available data
- 2. Mine working data (calculate many statistics)
- 3. Analyze the results / Draw conclusions

Every step is subject to noise and involves statistics.

What statistics can and cannot do!

What You Should Do Now

- 1. Check out the class web page: www.cs.utah. edu/~jeffp/teaching/cs3130.html
- Download the book (start reading Ch 1 & 2)
- Download and install R on your machine (take a look at R tutorial)