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Streaming algorithms are process that takes data in input stream and examine in few passes typically one
pass. Thease algorithms has limited memory available and limited processing time to process each data item.
All sampling methods that process the input file in one pass can be characterised as reservior algorithms.

Reservoir Sampling is a family of randomized but fast algorithms for selecting a random sample of n
records without replacement from a pool of N records, where value of N is unknown beforehand. Reservoir
algorithm select first n records of the file into a ’reservoir’ and rest of records are process sequentially.

7.1 Reservoir algorithm
Random sampling is basic to many computer applications in computer science, statistics, and engineering.
The problem is to select without replacement a random sample of size n from a set of size N.

The first step of any reservoir algorithm is to put the first n records of the file into a reservoir. The rest of
the records are processed sequentially; records can be selected for the reservoir only as they are processed.
An algorithm is a reservoir algorithm if it maintains the invariant that after each record is processed a true
random sample of size n can be extracted from the current state of the reservoir. This algorithm runs in O(N)
because the entire file must be scanned.

So, we assume we have a continuous random variable that can be generated quickly and whose distribution
approximate well. It can be generated very quickly, in constant time. So, At the ith element of S, the
algorithm generates a random number j between 1 and i. If j is less than n, the jth element of the reservoir
array is replaced with the ith element of S. In effect, for all i, the ith element of S is chosen to be included
in the reservoir with probability n/i. Assume i+1 to m elements kept in reservior. Now, probability of not
replaced element from reservior is 1-(m-i) /m = i/m. Total probability of kept and not replaced elements
is (n/i)*(i/m) = n/m. So, when algorithm finished executing, each element has equal probability of being
chosen from reservior.

7.2 Approximate Counts
The approximate counting problem counts large number of events using small amount of memory.

Consider query Interval I subset with elements [n] count(I) = |aiinA|aiinI|
Goal is to find data structure S such that for every query interval probablity = |S(I) − count(I)| >

eps ∗m.Probablity < delta.

7.2.1 Chernoff Inequality
Let X1, X2, ..., Xr be independent reserviors.
Let4i = max(Xi)−min(Xi)
Let M =
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Often : 4 = maxi4i and E[Xi] = 0 then :

Probablity = Pr[|M | >= α] <= 2exp(−2α
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Let S be a random sample of size k = O(( 1
eps2

)log( 1
4))

S(I) = |ScapI| ∗ (mk )

Each si in I with probability (count(I)/m)

Reservoir RV Yi = {1 if si in I, 0 if si not in I}
E[Yi] = count(I)/m

Reservoir RVXi = (Yi − count(I)/m)/k
E[Xi] = 0
4 < 1/k

M = sumiXi == error on count estimate by S
Pr[|M | > eps] < 2exp( −2eps
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(k∗(1/k2)) < 4
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