
L20: GPU Architecture and Models

scribe(s): Abdul Khalifa

20.1 Overview
GPUs (Graphics Processing Units) are large parallel structure of processing cores capable of rendering
graphics efficiently on displays. The original intent when designing GPUs was to use them exclusively
for graphics rendering. People realized later that GPUs can in fact be used to process highly parallel data
structures and became popular for solving problems in other scientific domains which require intensive
computational power.

This notes will give a short history of graphics and then move to discuss GPU’s pipeline. It then concludes
with a section about GPU hierarchy and show an example of performance measure.

20.2 Graphics History
How a pixel is drawn on the screen? The process by which a computer transforms shapes stored in memory
into actual objects drawing in the screen is known as rendering. And most well known and used technique
during rendering is called rasterization. The basic concept can be described as shown in figure 20.1 where
each pixel is drawn on the screen if there exists a trace of light (the arrow) that intersect one of the triangle
shapes stored in memory. This simplistic view also shows that if a triangle is also further back than other
surrounding triangles then this should be reflected on the display and if a triangle is on top of another
triangle then the latter will be partly obscured by the former on the display. It is this approach whats
makes the foundation for 3D graphic support on computer screens. Figure 20.2 shows few examples of
images rendered with this approach. Eventually, GPUs are the hardware responsible for transforming the
representation in memory to actual objects in the screen. And since this is needs to be done for every pixel,
GPUs were developed to handle that in parallel.

Figure 20.1: How pixels are drawn on display.

Earlier GPUs in the 1990s were offered with a fixed functional pipeline that was implemented directly
via mainly two APIs: OpenGL and DirectX. This meant that GPUs were programmable with a low level

1

Figure 20.2: Two computer graphics created by drawing a pixel through tracing triangular shapes.

	

	

	

	

	

	

	

Models of Computation for Massive Data | F13 | Instructor: Jeff M. Phillips, UUtah

set of operations that interact directly with the hardware similar to assembly languages. At that time almost
most computer graphics look similar because they use either one of these two available APIs. OpenGL in
particular was not a programming language but rather a vendor specification of how the hardware interface
should be implemented. On the other hand, DirectX offered by Microsoft was essentially a library that
allowed development of graphics in computer games. The pipeline then evolved into a more advanced level
and shading capabilities were added into the APIs. The two main vendors who were manufacturing GPUs
were nVidia and ATI. In the next section, we shed more light on GPU’s pipeline.

20.3 GPU Pipeline
Figure 20.3 shows how early GPUs pipeline looked like. The input to the pipeline was the description of
graphics in memory in terms of vertices and triangular shapes. The input will be transformed using a vertex
shader which process every vertex individually and creates rasterized pixels in 2D screen. The fragment
shader will then take that and produce the final output.

Figure 20.3: Early GPU pipeline.

Figure 20.4: Improved GPU pipeline.

Figure 20.4 shows how the GPU pipeline looks now. Unlike early GPUs which used different hardware
for different shaders, the new pipeline uses a unified hardware that combines all shaders under one core and
shared memory. In addition, nVidia introduced CUDA (Compute Unified Device Architecture) which added
the ability to write general-purpose C code with some restrictions. This meant that a programmer has access
to thousands of cores which can be instructed to carry out similar operations in parallel.

20.4 GPU Hierarchy & Programming
In this section we will zoom out to look at the hierarchal structure of GPUs and give a simple example of
performance measure. Top of the line GPUs now are claimed to support few teraflops and 100+ GB/sec
of memory bandwidth internally. They are also easier to program through support of C++ (as in nVidia’s
Fermi architecture) and MATLAB integration. This is essentially why GPUs became very popular because
it was possible now to carry out expensive computational task without the need for expensive hardware

Models of Computation for Massive Data | F13 | Instructor: Jeff M. Phillips, UUtah

cluster setup. Therefore, many modern applications such as Phtotoshop and Mathematica took advantage of
GPUs. However, in order to fully take advantage of GPUs, the program must be highly parallel and contain
fine-grain simple operations which can be distributed easily across the e.g. thousands of cores.

Figure 20.5 shows the hierarchy of a GPU. The bottom of diagram is the computer’s system memory
(RAM and disk) and then on top of that is GPU’s internal memory. Then there are two levels caches: L2
and L1, and each L1 cache is connected to a processor known as stream processor (SM). The L1 cache has
a small memory range of about 16 to 64 kBs. Similarly, L2 cache in the GPU is significantly smaller than
typical L2 cache in computer’s memory, with the former in the order of few hundred kBs and the latter few
MBs. The trend is also the same at the memory level, with GPU’s memory up to 12 GBs and computer’s
main memory ranging between 4 GBs up to 128 GBs. Furthermore, the GPU’s memory is not coherent
meaning there is no support for concurrent read and concurrent write (CRCW).

Figure 20.5: GPU Hierarchy

Figure 20.6 is showing an example structure of each of stream processors inside of GPU. As can be seen
from the bottom of digram there is an L1 cache. There is also register memory (top of diagram) that is
shared between the 32 cores, with each core has access to fixed set of registers.

There has been some excitement in the research community about GPU’s 100-200x speed-up gains which
often overlooked some aspects of the GPUs and which were driven mainly by unfair comparison to the
general-purpose CPUs. Some of the key issues to consider when evaluating the gain in speed-up in the
GPU in comparison to CPU are, for instance, whether similar optimized code was used on both GPU and
CPU, and whether single precision or double precision numbers were used. The double precision is known
to cause slow performance in GPU. Further, it is often the case that the transfer time between computer’s
memory to GPU’s memory is neglected. As it turn out in some cases this can be nontrivial and it is a
hardware issue that can not be handled by software. Taking this transfer time into account when measuring
performance and making comparisons is essential.

To illustrate this final point of memory transfer time, we will now show a simple experiment of GPU
performance measure using a Matlab program. Consider the following lines of Matlab code,

cpu_x = rand(1,100000000)*10*pi;
gpu_x = gpuArray(cpu_x);

Models of Computation for Massive Data | F13 | Instructor: Jeff M. Phillips, UUtah

Figure 20.6: GPU’s Stream Processor.

gpu_y = sin(gpu_x);
cpu_y = gather(gpu_y);

The first line creates a large array data structure with hundreds of millions of decimal numbers. The sec-
ond line loads this large array into GPU’s memory. The third executes the sin function on each individual
number of the array inside the GPU. And last line transfer the results back into computer’s main memory.
The plot in the top of figure 20.7 shows the runtime performance comparison as a result of executing this
program with increasing input size. The middle line is the baseline performance of computer’s CPU while
the bottom line is GPU’s runtime excluding memory transfer and the line at the top is GPU’s runtime perfor-
mance when taking memory transfer into account. Obviously, this shows that GPU’s runtime performance
is better by about a factor of 3 without considering transfer time and it is worse than CPU’s runtime per-
formance when transfer time is included. However, now consider changing the the third line in our Matlab
program and instead use a more expensive function such as big-trig-function instead of sin. The
plot at the bottom of figure 20.7 shows the resulting runtime performance. The top line is CPU performance
while the two lines below are runtime performance including transfer time of two different brands of GPUs.
This time the GPUs outperform the CPU by about a factor of 3 to 6 even when the transfer time is included.
Therefore, one has to be careful when measuring GPUs speedup gains for certain tasks and not to overlook
important aspects that may affect a fair comparison.

Models of Computation for Massive Data | F13 | Instructor: Jeff M. Phillips, UUtah

Figure 20.7: GPU runtime performance measure.

	

	

	

	

	

Models of Computation for Massive Data | F13 | Instructor: Jeff M. Phillips, UUtah

