
Introduction to MapReduce Algorithms and
Analysis

Jeff M. Phillips

October 25, 2013



Trade-Offs

Massive parallelism that is very easy to program.

I Cheaper than HPC style (uses top of the line everything)

I Assumption about data (key-value pairs).

I Restrictions on how computation is done.



Cluster of Commodity Nodes (2003)

Big Iron Box:

I 8 2GHz Xeons (Processors)

I 64 GB RAM

I 8 TB disk

I 758,000 USD

Google Rack:

I 176 2GHz Xeons (Processors)

I 176 GB RAM

I 7 TB disk

I 278,000 USD



Google File System

SOSP 2003 (Ghemawat, Gobioff, Leung)

Key-Value Pairs:
All files stored as Key-Value pairs

I key: log id value: actual log

I key: web address value: html and/or outgoing links

I key: document id in set value: list of words

I key: word in corpus value: how often it appears

Blocking:
All files broken into blocks (often 64 MB)
Each block has replication factor (say 3 times), stored in separate
nodes.
No locality on compute nodes, no neighbors or replicas on same
node (but often same rack).



No locality?

Really?

I Resiliency: if one dies, use another
(on big clusters happens all the time)

I Redundancy: If one is slow, use another
(...curse of last reducer)

I Heterogeneity: Format quite flexible, 64MB often still enough
(recall: IO-Efficiency)



No locality?

Really?

I Resiliency: if one dies, use another
(on big clusters happens all the time)

I Redundancy: If one is slow, use another
(...curse of last reducer)

I Heterogeneity: Format quite flexible, 64MB often still enough
(recall: IO-Efficiency)



MapReduce

OSDI 04 (Dean, Ghemawat)

Each Processor has full hard drive,
data items < key,value >.
Parallelism Procedes in Rounds:

I Map: assigns items to processor
by key.

I Reduce: processes all items using
value. Usually combines many
items with same key.

Repeat M+R a constant number of
times, often only one round.

I Optional post-processing step.

CPU

RAM

CPU

RAM

CPU

RAM

MAP

REDUCE

sort

post-process
Pro: Robust (duplication) and simple. Can harness Locality
Con: Somewhat restrictive model



MapReduce

OSDI 04 (Dean, Ghemawat)



MapReduce

OSDI 04 (Dean, Ghemawat)



Granularity and Pipelining

OSDI 04 (Dean, Ghemawat)



MapReduce
OSDI 04 (Dean, Ghemawat)



MapReduce
OSDI 04 (Dean, Ghemawat)



MapReduce
OSDI 04 (Dean, Ghemawat)



MapReduce
OSDI 04 (Dean, Ghemawat)



MapReduce
OSDI 04 (Dean, Ghemawat)



MapReduce
OSDI 04 (Dean, Ghemawat)



MapReduce
OSDI 04 (Dean, Ghemawat)



MapReduce
OSDI 04 (Dean, Ghemawat)



MapReduce
OSDI 04 (Dean, Ghemawat)



MapReduce

OSDI 04 (Dean, Ghemawat)



MapReduce

OSDI 04 (Dean, Ghemawat)



Last Reducer

Typically Map phase linear on blocks. Reducers more variable.

No answer until the last one is done!
Some machines get slow/crash!

Solution: Automatically run back-up copies. Take first to
complete.

Scheduled by Master Node
Organizes computation, but does not process data.
If this fails, all goes down.



Last Reducer

Typically Map phase linear on blocks. Reducers more variable.

No answer until the last one is done!
Some machines get slow/crash!

Solution: Automatically run back-up copies. Take first to
complete.

Scheduled by Master Node
Organizes computation, but does not process data.
If this fails, all goes down.



Example 1: Word Count

Given text corpus 〈 doc id, list of words 〉, count how many of each
word exists.

Map:

For each word w → 〈w , 1〉

Reduce:
{〈w , c1〉, 〈w , c2〉, 〈w , c3〉, . . .} → 〈w ,

∑
i ci 〉

w = “the” is 7% of all words!
Combine: (before Map goes to Shuffle phase)
{〈w , c1〉, 〈w , c2〉, 〈w , c3〉, . . .} → 〈w ,

∑
i ci 〉



Example 1: Word Count

Given text corpus 〈 doc id, list of words 〉, count how many of each
word exists.

Map:
For each word w → 〈w , 1〉

Reduce:

{〈w , c1〉, 〈w , c2〉, 〈w , c3〉, . . .} → 〈w ,
∑

i ci 〉

w = “the” is 7% of all words!
Combine: (before Map goes to Shuffle phase)
{〈w , c1〉, 〈w , c2〉, 〈w , c3〉, . . .} → 〈w ,

∑
i ci 〉



Example 1: Word Count

Given text corpus 〈 doc id, list of words 〉, count how many of each
word exists.

Map:
For each word w → 〈w , 1〉

Reduce:
{〈w , c1〉, 〈w , c2〉, 〈w , c3〉, . . .} →

〈w ,
∑

i ci 〉

w = “the” is 7% of all words!
Combine: (before Map goes to Shuffle phase)
{〈w , c1〉, 〈w , c2〉, 〈w , c3〉, . . .} → 〈w ,

∑
i ci 〉



Example 1: Word Count

Given text corpus 〈 doc id, list of words 〉, count how many of each
word exists.

Map:
For each word w → 〈w , 1〉

Reduce:
{〈w , c1〉, 〈w , c2〉, 〈w , c3〉, . . .} → 〈w ,

∑
i ci 〉

w = “the” is 7% of all words!
Combine: (before Map goes to Shuffle phase)
{〈w , c1〉, 〈w , c2〉, 〈w , c3〉, . . .} → 〈w ,

∑
i ci 〉



Example 1: Word Count

Given text corpus 〈 doc id, list of words 〉, count how many of each
word exists.

Map:
For each word w → 〈w , 1〉

Reduce:
{〈w , c1〉, 〈w , c2〉, 〈w , c3〉, . . .} → 〈w ,

∑
i ci 〉

w = “the” is 7% of all words!

Combine: (before Map goes to Shuffle phase)
{〈w , c1〉, 〈w , c2〉, 〈w , c3〉, . . .} → 〈w ,

∑
i ci 〉



Example 1: Word Count

Given text corpus 〈 doc id, list of words 〉, count how many of each
word exists.

Map:
For each word w → 〈w , 1〉

Reduce:
{〈w , c1〉, 〈w , c2〉, 〈w , c3〉, . . .} → 〈w ,

∑
i ci 〉

w = “the” is 7% of all words!
Combine: (before Map goes to Shuffle phase)
{〈w , c1〉, 〈w , c2〉, 〈w , c3〉, . . .} → 〈w ,

∑
i ci 〉



Example 1: Word Count - Actual Code



Example 1: Word Count - Actual Code



Example 1: Word Count - Actual Code



Example 1: Word Count - Actual Code



Example 2: Inverted Index

Given all of Wikipedia (all webpages), for each word, list all pages
it is on.

Map:

For page p, each word w → 〈w , p〉

Reduce:
{〈w , p1〉, 〈w , p2〉, 〈w , p3〉, . . .} → 〈w ,∪ipi 〉



Example 2: Inverted Index

Given all of Wikipedia (all webpages), for each word, list all pages
it is on.

Map:
For page p, each word w → 〈w , p〉

Reduce:

{〈w , p1〉, 〈w , p2〉, 〈w , p3〉, . . .} → 〈w ,∪ipi 〉



Example 2: Inverted Index

Given all of Wikipedia (all webpages), for each word, list all pages
it is on.

Map:
For page p, each word w → 〈w , p〉

Reduce:
{〈w , p1〉, 〈w , p2〉, 〈w , p3〉, . . .} →

〈w ,∪ipi 〉



Example 2: Inverted Index

Given all of Wikipedia (all webpages), for each word, list all pages
it is on.

Map:
For page p, each word w → 〈w , p〉

Reduce:
{〈w , p1〉, 〈w , p2〉, 〈w , p3〉, . . .} → 〈w ,∪ipi 〉



Example 2: Inverted Index

Given all of Wikipedia (all webpages), for each word, list all pages
it is on.

Map:
For page p, each word w → 〈w , p〉

Combine:
{〈w , p1〉, 〈w , p2〉, 〈w , p3〉, . . .} → 〈w ,∪ipi 〉

Reduce:
{〈w , p1〉, 〈w , p2〉, 〈w , p3〉, . . .} → 〈w ,∪ipi 〉



Hadoop

Open source version of MapReduce (and related, e.g. HDFS)

I Began 2005 (Cutting + Cafarella) supported by Yahoo!

I Stable enough for large scale around 2008

I Source code released 2009

Java (MapReduce in C++)

Led to widespread adoption in industry and academia!



Rounds

Many algorithms are iterative, especially machine learning / data
mining:

I Lloyd’s algorithm for k-means

I gradient descent

I singular value decomposition

May require log2 n rounds.

log2(n = 1 billion) ≈ 30

MapReduce puts rounds at a premium.
Hadoop can have several minute delay between rounds.
(Each rounds writes to HDFS for resiliency; same in MapReduce)

MRC Model (Karloff, Suri, Vassilvitskii; SODA 2010).
Stresses Rounds.



Rounds

Many algorithms are iterative, especially machine learning / data
mining:

I Lloyd’s algorithm for k-means

I gradient descent

I singular value decomposition

May require log2 n rounds. log2(n = 1 billion) ≈ 30

MapReduce puts rounds at a premium.
Hadoop can have several minute delay between rounds.
(Each rounds writes to HDFS for resiliency; same in MapReduce)

MRC Model (Karloff, Suri, Vassilvitskii; SODA 2010).
Stresses Rounds.



Rounds

Many algorithms are iterative, especially machine learning / data
mining:

I Lloyd’s algorithm for k-means

I gradient descent

I singular value decomposition

May require log2 n rounds. log2(n = 1 billion) ≈ 30

MapReduce puts rounds at a premium.
Hadoop can have several minute delay between rounds.
(Each rounds writes to HDFS for resiliency; same in MapReduce)

MRC Model (Karloff, Suri, Vassilvitskii; SODA 2010).
Stresses Rounds.



Rounds

Many algorithms are iterative, especially machine learning / data
mining:

I Lloyd’s algorithm for k-means

I gradient descent

I singular value decomposition

May require log2 n rounds. log2(n = 1 billion) ≈ 30

MapReduce puts rounds at a premium.
Hadoop can have several minute delay between rounds.
(Each rounds writes to HDFS for resiliency; same in MapReduce)

MRC Model (Karloff, Suri, Vassilvitskii; SODA 2010).
Stresses Rounds.



Bulk Synchronous Parallel

Les Valiant [1989] BSP
Creates “barriers” in parallel algorithm.

1. Each processor computes on data

2. Processors send/receive data

3. Barrier : All processors wait for
communication to end globally

Allows for easy synchronization. Easier
to analyze since handles many messy
synchronization details if this is
emulated.

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM



Bulk Synchronous Parallel

Les Valiant [1989] BSP
Creates “barriers” in parallel algorithm.

1. Each processor computes on data

2. Processors send/receive data

3. Barrier : All processors wait for
communication to end globally

Allows for easy synchronization. Easier
to analyze since handles many messy
synchronization details if this is
emulated.

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM



Bulk Synchronous Parallel

Les Valiant [1989] BSP
Creates “barriers” in parallel algorithm.

1. Each processor computes on data

2. Processors send/receive data

3. Barrier : All processors wait for
communication to end globally

Allows for easy synchronization. Easier
to analyze since handles many messy
synchronization details if this is
emulated.

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

Reduction from MR (Goodrich, Sitchinava, Zhang; ISAAC 2011)



Replication Rate

Consider a join of two sets of size R, S of size n = 10, 000.
List pair (r , s) ∈ R × S if f (r , s) = 1, for some function f .

Option 1: Create n2 reducers.
Replication rate of g = n.

Option 2: Create 1 reducers.
Reducer of size 2n, has n2 = 100million operation.
Replication rate g = 1. No parallelism.

Option 3: Create g2 reducers, each with 2 groups of size n/g .
Reducer size 2n/g , (n/g)2 operations (g = 10 only 1million).
Replication rate of g .



Replication Rate

Consider a join of two sets of size R, S of size n = 10, 000.
List pair (r , s) ∈ R × S if f (r , s) = 1, for some function f .

Option 1: Create n2 reducers.
Replication rate of g = n.

Option 2: Create 1 reducers.
Reducer of size 2n, has n2 = 100million operation.
Replication rate g = 1. No parallelism.

Option 3: Create g2 reducers, each with 2 groups of size n/g .
Reducer size 2n/g , (n/g)2 operations (g = 10 only 1million).
Replication rate of g .



Replication Rate

Consider a join of two sets of size R, S of size n = 10, 000.
List pair (r , s) ∈ R × S if f (r , s) = 1, for some function f .

Option 1: Create n2 reducers.
Replication rate of g = n.

Option 2: Create 1 reducers.
Reducer of size 2n, has n2 = 100million operation.
Replication rate g = 1. No parallelism.

Option 3: Create g2 reducers, each with 2 groups of size n/g .
Reducer size 2n/g , (n/g)2 operations (g = 10 only 1million).
Replication rate of g .



Replication Rate

Consider a join of two sets of size R, S of size n = 10, 000.
List pair (r , s) ∈ R × S if f (r , s) = 1, for some function f .

Option 1: Create n2 reducers.
Replication rate of g = n.

Option 2: Create 1 reducers.
Reducer of size 2n, has n2 = 100million operation.
Replication rate g = 1. No parallelism.

Option 3: Create g2 reducers, each with 2 groups of size n/g .
Reducer size 2n/g , (n/g)2 operations (g = 10 only 1million).
Replication rate of g .

(Afrati, Das Sarma, Salihoglu, Ullman 2013),
(Beame, Koutris, Suciu 2013)



Sawzall / Dremel / Tenzing
Google solution to many to few:

I Compute statistics on massive distributed data.

I Separates local computation from aggregation.

I Better with Iteration



Berkeley Spark: Processing in memory

Zaharia, Chowdhury, Das, Ma, McCauley, Franklin, Shenker, Stoica
(HotCloud 2010, NSDI 2012)

I Keeps relevant information in memory.

I Much faster on iterative algorithms (machine learning, SQL
queries)

I Requires careful work to retain resiliency

Key idea: RDDs: Resilient Distributed Data. Can be stored in
memory without replication, rebuilt from lineage if lost.


