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Trade-Offs

Massive parallelism that is very easy to program.

I Cheaper than HPC style (uses top of the line everything)

I Assumption about data (key-value pairs).

I Restrictions on how computation is done.



Cluster of Commodity Nodes (2003)

Big Iron Box:

I 8 2GHz Xeons (Processors)

I 64 GB RAM

I 8 TB disk

I 758,000 USD

Google Rack:

I 176 2GHz Xeons (Processors)

I 176 GB RAM

I 7 TB disk

I 278,000 USD



Google File System

SOSP 2003 (Ghemawat, Gobioff, Leung)

Key-Value Pairs:
All files stored as Key-Value pairs

I key: log id value: actual log

I key: web address value: html and/or outgoing links

I key: document id in set value: list of words

I key: word in corpus value: how often it appears

Blocking:
All files broken into blocks (often 64 MB)
Each block has replication factor (say 3 times), stored in separate
nodes.
No locality on compute nodes, no neighbors or replicas on same
node (but often same rack).



No locality?

Really?

I Resiliency: if one dies, use another
(on big clusters happens all the time)

I Redundancy: If one is slow, use another
(...curse of last reducer)

I Heterogeneity: Format quite flexible, 64MB often still enough
(recall: IO-Efficiency)
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MapReduce

OSDI 04 (Dean, Ghemawat)

Each Processor has full hard drive,
data items < key,value >.
Parallelism Procedes in Rounds:

I Map: assigns items to processor
by key.

I Reduce: processes all items using
value. Usually combines many
items with same key.

Repeat M+R a constant number of
times, often only one round.

I Optional post-processing step.
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Pro: Robust (duplication) and simple. Can harness Locality
Con: Somewhat restrictive model
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Granularity and Pipelining
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Last Reducer

Typically Map phase linear on blocks. Reducers more variable.

No answer until the last one is done!
Some machines get slow/crash!

Solution: Automatically run back-up copies. Take first to
complete.

Scheduled by Master Node
Organizes computation, but does not process data.
If this fails, all goes down.
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Example 1: Word Count

Given text corpus 〈 doc id, list of words 〉, count how many of each
word exists.

Map:

For each word w → 〈w , 1〉

Reduce:
{〈w , c1〉, 〈w , c2〉, 〈w , c3〉, . . .} → 〈w ,

∑
i ci 〉

w = “the” is 7% of all words!
Combine: (before Map goes to Shuffle phase)
{〈w , c1〉, 〈w , c2〉, 〈w , c3〉, . . .} → 〈w ,

∑
i ci 〉
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Example 2: Inverted Index

Given all of Wikipedia (all webpages), for each word, list all pages
it is on.

Map:

For page p, each word w → 〈w , p〉

Reduce:
{〈w , p1〉, 〈w , p2〉, 〈w , p3〉, . . .} → 〈w ,∪ipi 〉
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Hadoop

Open source version of MapReduce (and related, e.g. HDFS)

I Began 2005 (Cutting + Cafarella) supported by Yahoo!

I Stable enough for large scale around 2008

I Source code released 2009

Java (MapReduce in C++)

Led to widespread adoption in industry and academia!



Rounds

Many algorithms are iterative, especially machine learning / data
mining:

I Lloyd’s algorithm for k-means

I gradient descent

I singular value decomposition

May require log2 n rounds.

log2(n = 1 billion) ≈ 30

MapReduce puts rounds at a premium.
Hadoop can have several minute delay between rounds.
(Each rounds writes to HDFS for resiliency; same in MapReduce)

MRC Model (Karloff, Suri, Vassilvitskii; SODA 2010).
Stresses Rounds.
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Bulk Synchronous Parallel

Les Valiant [1989] BSP
Creates “barriers” in parallel algorithm.

1. Each processor computes on data

2. Processors send/receive data

3. Barrier : All processors wait for
communication to end globally

Allows for easy synchronization. Easier
to analyze since handles many messy
synchronization details if this is
emulated.
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Reduction from MR (Goodrich, Sitchinava, Zhang; ISAAC 2011)



Replication Rate

Consider a join of two sets of size R, S of size n = 10, 000.
List pair (r , s) ∈ R × S if f (r , s) = 1, for some function f .

Option 1: Create n2 reducers.
Replication rate of g = n.

Option 2: Create 1 reducers.
Reducer of size 2n, has n2 = 100million operation.
Replication rate g = 1. No parallelism.

Option 3: Create g2 reducers, each with 2 groups of size n/g .
Reducer size 2n/g , (n/g)2 operations (g = 10 only 1million).
Replication rate of g .
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(Afrati, Das Sarma, Salihoglu, Ullman 2013),
(Beame, Koutris, Suciu 2013)



Sawzall / Dremel / Tenzing
Google solution to many to few:

I Compute statistics on massive distributed data.

I Separates local computation from aggregation.

I Better with Iteration



Berkeley Spark: Processing in memory

Zaharia, Chowdhury, Das, Ma, McCauley, Franklin, Shenker, Stoica
(HotCloud 2010, NSDI 2012)

I Keeps relevant information in memory.

I Much faster on iterative algorithms (machine learning, SQL
queries)

I Requires careful work to retain resiliency

Key idea: RDDs: Resilient Distributed Data. Can be stored in
memory without replication, rebuilt from lineage if lost.


