
MCMD L19 : MapReduce | Sorting + Sliding Windows

MapReduce

S = Massive Data

Mapper(S): s in S -> {(key,value)}

Shuffle({(key,value)}) -> group by "key"

Reducer ({"key,value_i}) -> ("key, f(value_i))

Can repeat, constant # of rounds

——————

[Tao + Lin + Xiao 2013]

Minimal MapReduce Algorithm
 N = size of data
 t = number of machines
 m = N/t = # objects per machine if distributed evenly.
 m < M = Mem size

 1) At all times each machine has O(m) storage
 2) Each machine sends/receives O(m) items
 3) constant # rounds
 4) Optimal computation: each machine performs O(T_seq / t) in total
 O(T_seq / t) per machine per round.

 1)+2) prevents partition skew
 m = N/t allows to scale to any # machines !
 2) ensures total traffic is O(N)
 no straggling machine
 ensures is stateless (resilience, can use fake larger t + load
balancing)
 3) for practicality
 4) energy cost is low

Sorting

TeraSort: http://sortbenchmark.org
 Ellapsed time to sort 10^12 bytes = 1TB (now 100 TB)
 measured in TBs/minute
 —> record (2013) 1.42 TB minute on 102.5 TB.

2009: Hadoop 100 TB in 172 min (0.572 TB / min) (3452 machines)

 500 GB in 1 minute (on 1406 machines)
 previous used fewer, but expensive machines

How does it work?

 parameter k = t ln (N*t)

Map 1:
 For all s in S, with prob (k/N)
 —> {<1,s> <2,s> ... <t,s>} <original TeraSort, only send to 1>

Reduce 1:
 On each node: <j, {s_1 ... s_{~k}} = Q> (same Q)
 -> sort(Q), choose t-1 even spaced items b_1, b_2, ..., b_{t-1}
 b_j = j[k/t]th item
 b_0 = -infinity, b_t = infinity

Map 2:
 For all s in S: find j s.t. b_{j-1} < s <= b_j
 —> <j, s>

Reduce 2: <j, {s, s’, …} = S_j}
 -> <j, sort(Q_j)>

Central Limit theorem (Chernoff Bound) k/2 < |Q| < k w.h.p.

Need:
 (1) |Q| = O(m) fine for t = O(m / log (N))
 (2) for all j, |S_j| = O(m)

Given (2), then T_j = (N/t) log (N/t)
 sum_j T_j = (N/t) log (N/t) = N log (N/t) < N log N

Prove (2):
 eps-net: Given k = (1/eps) ln (1/eps * delta) samples, w.p > 1-
delta:
 each interval of size eps*N has at least one point
 —> each |S_j| <= N/t + 2*eps*N
 (not completely obvious, symmetric difference)
 set eps*N = N/t -> t = 1/eps
 —> k = t ln (t/delta)
 w.p.h = w.p > 1-1/N -> k = t ln (tN)

Makes many tasks Minimal: e.g. Prefix Sum:
 Sort (2 rounds)

Reduce2: also computes agg(S_j) = sum(S_j) = g_j
 -> {<1,g_j> <2,g_j> … <j,g_j>}
 -> {<j,s> for all s in S_j}

Map3: identity

Reduce3: node j:
 W_j = sum_{i=1}^j g_j
 for s_i in S
 W_j += w_i
 p_i = W_j

Sliding Aggregates

S has N objects: ordered, each s_i has weight w_i
integer l < N
distributed aggregate agg (e.g. Sum, Min, Max)
 for S1 and S2 have agg(agg(S1), agg(S2)) = agg(S1 union S2)
window(i) = l largest items not exceeding s_i

sliding window statistics

Rounds 1+2 ——> Sort -> S_1, ..., S_t

Round 3 -> use rank (prefix sum w/ w_i = 1) to have each |S_j| = m
exacty

Round 4:
Map 4: (really Reduce 3)
 + Send A_j = agg(S_j) to all machines
 {<1,A_j> , <2,A_j>, ..., <t,A_j>
 + Send <[(i-l)/t],w_i> for all s_i in S_j

Reduce:
 window(i) = agg(
 agg_{l = i-l}^[(i-l+1)/t]*k w_i
 , A_[(i-l+1)/t] , A_[(i-l+2]/t , ... , A_[(i-1)/t]
 , agg_{s_l in S_j, l<i} w_i
 can be done in O(m) time

** each s_i important for at most 2 units, we know which ones **

