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Preface
This book is meant for use with a self-contained course that introduces many basic principals and techniques
needed for modern data analysis. In particular, this course was designed as preparation for students planning
to take rigorous Machine Learning and Data Mining courses. With this goal in mind, it both introduces key
conceptual tools which are often helpful to see multiple times, and the most basic techniques to begin a basic
familiarity with the backbone of modern data analysis.

Interaction with other courses. It is recommended that students taking this class have calculus and a
familiarity with programming and algorithms. They should have also taken some probability and/or linear
algebra; but we also review key concepts in these areas, so as to keep the book more self-contained. Thus,
it may be appropriate for students to take these classes simultaneously. If appropriately planned for, it is the
hope that this course could be taken at the sophomore level so that more rigorous and advanced data analysis
classes can already be taken during the junior year.

Although we touch on Bayesian Inference, we do not cover most of classical statistics; neither frequen-
tist hypothesis testing or the similar Bayesian perspectives. Most universities have well-developed classes
on these topics which while also very useful, provide a complimentary view of data analysis. Classical
statistical modeling approaches are often essential when a practitioner needs to provide some modeling
assumptions to harness maximum power from limited data. But in the era of big data this is not always
necessary. Rather, the topics in this course provide tools for using some of the data to help choose the
model.

Scope and topics. Vital concepts introduced include concentration of measure and PAC bounds, cross-
validation, gradient descent, and principal component analysis. These ideas are essential for modern data
analysis, but not often taught in other introductory mathematics classes in a computer science or math
department. Or if these concepts are taught, they are also presented in a very different context.

We also survey basic techniques in supervised (regression and classification) and unsupervised (principal
component analysis and clustering) learning. We make an effort to keep the presentation and concepts on
these topics simple. We stick to those which attempt to minimize sum of squared errors, and do not go much
into regularization. We stick to classic but magical algorithms like Lloyd’s algorithm for k-means, the power
method for eigenvectors, and perceptron for linear classification. For many students (especially those in a
computer science program), these are the first iterative, non-discrete algorithms they will have encountered.

On data. While this course is mainly focused on a mathematical preparation, what would data analysis be
without data? As such we provide discussion on how to use these tools and techniques on actual data, with
examples given in python. We choose python since it has many powerful libraries with extremely efficient
backends in C. So for most data sets, this provides the proper interface for working with these tools.

But arguably more important than writing the code itself is a discussion on when and when-not to use
techniques from the immense toolbox available. This is one of the main ongoing questions a data scientist
must ask. And so, the text attempts to introduce the readers to this ongoing discussion.

Jeff M. Phillips
Salt Lake City, December 2016
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1 Probability Review

Probability is a critical tool for modern data analysis. It arises in dealing with uncertainty, in randomized
algorithms, and in Bayesian analysis. To understand any of these concepts correctly, it is paramount to have
a solid and rigorous statistical foundation. Here we review some key definitions.

1.1 Sample Spaces
We define probability through set theory, starting with a sample space Ω. This represents the space of all
things that might happen in the setting we consider. One such potential outcome ω ∈ Ω is a sample outcome,
it is an element of the space Ω. We are usually interested in an event that is a subset A ⊆ Ω of the sample
space.

Example: Discrete Sample Space

Consider rolling a single fair, 6-sided die. Then Ω = {1, 2, 3, 4, 5, 6}. One roll may produce an
outcome ω = 3, rolling a 3. An event might be A = {1, 3, 5}, any odd number.
The probability of rolling an odd number is then Pr(A) = |{1, 3, 5}|/|{1, 2, 3, 4, 5, 6}| = 1/2.

A random variable X : Ω → S is a function from the sample space Ω to a domain S. Many times
S ⊆ R, where R is the space of real numbers.

Example: Random Variable

Consider flipping a fair coin with Ω = {H,T}. If I get a head H , then I get 1 point, and if I get a T ,
then I get 4 points. This describes the random variable X , defined X(H) = 1 and X(T ) = 4.

The probability of an event Pr(A) satisfies the following properties:

• 0 ≤ Pr(A) ≤ 1 for any A,
• Pr(Ω) = 1, and
• The probability of the union of disjoint events is equivalent to the sum of their individual probabilities.

Formally, for any sequence A1, A2, . . . where for all i 6= j that Ai ∩Aj = ∅, then

Pr

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

Pr(Ai).

Sample spaces Ω can also be continuous, representing some quantity like water, time, or land mass which
does not have discrete quantities. All of the above definitions hold for this setting.

Example: Continuous Sample Space

Assume you are riding a Swiss train that is always on time, but its departure is only specified to the
minute (specifically, 1:37 pm). The true departure is then in the state space Ω = [1:37:00, 1:38:00).
A continuous event may be A = [1:37:00− 1:37:40), the first 40 seconds of that minute.
Perhaps the train operators are risk averse, so Pr(A) = 0.80. That indicates that 0.8 fraction of trains
depart in the first 2/3 of that minute (less than the 0.666 expected from a uniform distribution).
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1.2 Conditional Probability and Independence
Now consider two events A and B. The conditional probability of A given B is written Pr(A | B), and
can be interpreted as the probability of A, restricted to the setting where we know B is true. It is defined in
simpler terms as Pr(A | B) = Pr(A∩B)

Pr(B) , that is the probabilityA andB are both true, divided by (normalized
by) the probability B is true.

Two events A and B are independent of each other if and only if

Pr(A | B) = Pr(A).

Equivalently they are independent if and only if Pr(B | A) = Pr(B) or Pr(A ∩ B) = Pr(A)Pr(B). By
algebraic manipulation, it is not hard to see these are all equivalent properties. This implies that knowledge
about B has no effect on the probability of A (and vice versa from A to B).

Example: Conditional Probability

Consider the two random variables. T is 1 if a test for cancer is positive, and 0 otherwise. Variable
C is 1 if a patient has cancer, and 0 otherwise. The joint probability of the events is captured in the
following table:

C = 1 C = 0

T = 1 0.1 0.02
T = 0 0.05 0.83

Note that the sum of all cells (the joint sample space Ω) is 1. The conditional probability of having
cancer, given a positive test is Pr(C = 1 | T = 1) = 0.1

0.1+0.02 = 0.8333. The probability of cancer
(ignoring the test) is Pr(C = 1) = 0.1 + 0.05 = 0.15. Since Pr(C = 1 | T = 1) 6= Pr(C = 1),
then events T = 1 and C = 1 are not independent.

Two random variables X and Y are independent if and only if, for all possible events A ⊆ ΩX and
B ⊆ ΩY that A and B are independent: Pr(A ∩B) = Pr(A)Pr(B).

1.3 Density Functions
Discrete random variables can often be defined through tables (as in the above cancer example). Or we can
define a function fX(k) as the probability that random variable X is equal to k. For continuous random
variables we need to be more careful; we use calculus. We will next develop probability density functions
and cumulative density functions for continuous random variables; the same constructions are sometimes
useful for discrete random variables as well, which basically just replace a integral with a sum.

We consider a continuous sample space Ω, and a random variable X defined on that sample space. The
probability density function of a random variable X is written fX . It is defined with respect to any event A
so that Pr(X ∈ A) =

∫
ω∈A fX(ω)dω. The value fX(ω) is not equal to Pr(X = ω) in general, since for

continuous functions Pr(X = ω) = 0 for any single value ω ∈ Ω. Yet, we can interpret fX as a likelihood
function; its value has no units, but they can be compared and larger ones are more likely.

Next we will defined the cumulative density function FX(t); it is the probability that X takes on a
value of t or smaller. Here it is typical to have Ω = R, the set of real numbers. Now define FX(t) =∫ t
ω=−∞ fX(ω)dω.

We can also define a pdf in terms of a cdf as fX(ω) = dFX(ω)
dω .
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Example: Normal Random Variable

A normal random variable X is a very common distribution to model noise. It has domain Ω = R.
Its pdf is defined fX(ω) = 1√

2π
exp(−ω2/2) = 1√

2π
e−ω

2/2, and its cdf has no closed form solution.
We have plotted the cdf and pdf in the range [−3, 3] where most of the mass lies:
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normal PDF
normal CDF

import matplotlib as mpl
mpl.use(’PDF’)
import matplotlib.pyplot as plt
from scipy.stats import norm
import numpy as np
import math

mu = 0
variance = 1
sigma = math.sqrt(variance)
x = np.linspace(-3, 3, 201)

plt.plot(x, norm.pdf((x-mu)/sigma),linewidth=2.0, label=’normal PDF’)
plt.plot(x, norm.cdf((x-mu)/sigma),linewidth=2.0, label=’normal CDF’)
plt.legend(bbox_to_anchor=(.35,1))

plt.savefig(’Gaussian.pdf’, bbox_inches=’tight’)

1.4 Expected Value
The expected value of a random variableX in a domain Ω is a very important constant, basically a weighted
average of Ω, weighted by the range of X . For a discrete random variable X it is defined

E[X] =
∑

ω∈Ω

ω · Pr[X = ω].

For a continuous random variable X it is defined

E[X] =

∫

ω∈Ω
ωfX(ω)dω.

Linearity of Expectation: An important property of expectation is that it is a linear operation. That
means for two random variables X and Y we have E[X +Y ] = E[X] + E[Y ]. For a scalar value α, we also
E[αX] = αE[X].
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Example: Expectation

Let H be the random variable of the height of a man in meters without shoes. Let the pdf fH of H
be a normal distribution with expected value µ = 1.755m and with standard deviation 0.1m. Let S
be the random variable of the height added by wearing a pair of shoes in centimeters (1 meter is 100
centimeters), its pdf is given by the following table:

S = 1 S = 2 S = 3 S = 4

0.1 0.1 0.5 0.3

Then the expected height of someone wearing shoes in centimeters is

E[100·H+S] = 100·E[H]+E[S] = 100·1.755+(0.1·1+0.1·2+0.5·3+0.3·4) = 175.5+3 = 178.5

Note how the linearity of expectation allowed us to decompose the expression 100 ·H + S into its
components, and take the expectation of each one individually. This trick is immensely powerful
when analyzing complex scenarios with many factors.

1.5 Variance
The variance of a random variable X describes how spread out it is. It is defined

Var[X] = E[(X − E[X])2] = E[X2]− E[X]2.

The equivalence of those two common forms above uses that E[X] is a fixed scalar:

E[(X − E[X])2] = E[X2 − 2XE[X] + E[X]2] = E[X2]− 2E[X]E[X] + E[X]2 = E[X2]− E[X]2.

For any scalar α ∈ R, then Var[αX] = α2Var[X].
Note that the variance does not have the same units as the random variable or the expectation, it is that

unit squared. As such, we also often discuss the standard deviation σX =
√

Var[X].

Example: Variance

Consider again the random variable S for height added by a shoe:

S = 1 S = 2 S = 3 S = 4

0.1 0.1 0.5 0.3

Its expected value is E[S] = 3 (a fixed scalar), and its variance is

Var[S] = 0.1 · (1− 3)2 + 0.1 · (2− 3)2 + 0.5 · (3− 3)2 + 0.3 · (4− 3)2

= 0.1 · (−2)2 + 0.1 · (−1)2 + 0 + 0.3(1)2 = 0.4 + 0.1 + 0.3 = 0.8.

Then the standard deviation is σS =
√

0.8 ≈ 0.894.

The covariance of two random variables X and Y is defined Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])].
It measures how much these random variables vary in accordance with each other; that is, if both are con-
sistently away from the mean at the same time (in the same direction), then the covariance is high.
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1.6 Joint, Marginal, and Conditional Distributions

We now extend some of these concepts to more than one random variable. Consider two random variables
X and Y . Their joint pdf is defined fX,Y : ΩX × ΩY → [0,∞] where for discrete random variables this is
defined by the probability fX,Y (x, y) = Pr(X = x, Y = y). In this case, the domain of fX,Y is restricted
so fX,Y ∈ [0, 1] and so

∑
x,y∈X×Y fX,Y (x, y) = 1.

Similarly, when ΩX = ΩY = R, the joint cdf is defined FX,Y (x, y) = Pr(X ≤ x, Y ≤ y). The
marginal cumulative distribution functions of FX,Y are defined as FX(x) = limy→∞ FX,Y (x, y)dy and
FY (y) = limx→∞ FX,Y (x, y)dx.

Similarly, when Y is discrete, the marginal pdf is defined fX(x) =
∑

y∈ΩY
fX,Y (x, y) =

∑
y∈ΩY

Pr(X =

x, Y = y). When the random variables are continuous, we define fX,Y (x, y) =
d2FX,Y (x,y)

dxdy . And then the
marginal pdf of X (when ΩY = R) is defined fX(x) =

∫∞
−∞ fX,Y (x, y)dy. Marginalizing removes the

effect of a random variable (Y in the above definitions).

Now we can say random variables X and Y are independent if and only if fX,Y (x, y) = fX(x) · fY (y)
for all x and y.

Then a conditional distribution of X given Y = y is defined fX|Y (x | y) = fX,Y (x, y)/fY (y) (given
that fY (y) 6= 0).

Example: Marginal Distributions

Consider someone who randomly chooses his pants and shirt every day (a friend of mine actually did
this in college – all clothes were in a pile, clean or dirty). Let P be a random variable for the color of
pants, and S a random variable for the color of the shirt. Their joint probability is described by this
table:

S=green S=red S=blue
P=blue 0.3 0.1 0.2
P=white 0.05 0.2 0.15

Adding up along columns, the marginal distribution fP for the color of the shirt is described by the
following table:

S=green S=red S=blue
0.35 0.3 0.35

Isolating and renormalizing the middle “S=red” column, the conditional distribution fP |S(· | S= red)
if described by the following table:

P=blue P=white
0.1
0.3 = 0.3333 0.2

0.3 = 0.6666
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Example: Gaussian Distribution

The Gaussian distribution is a d-variate distribution Nd : Rd → R that generalizes the one-
dimensional normal distribution. The definition of the symmetric version (we will generalize to
non-trivial covariance later on) depends on a mean µ ∈ Rd and a variance σ2. For any vector Rd, it
is defined

Nd(v) =
1

σd
√

2πd
exp

(
−‖v − µ‖2/σ2

)
.

For the 2-dimensional case where v = (vx, vy) and µ = (µx, µy), then this is defined

N2(v) =
1

σ2π
√

2
exp

(
−((vx − µx)2 − (vy − µy)2)/σ2

)
.

A magical property about the Gaussian distribution is that all conditional versions of it are also
Gaussian, of a lower dimension. For instance, in the two dimensional case N2(vx | vy = 1) is a
1-dimensional Gaussian, or a normal distribution. There are many other essential properties of the
Gaussian that we will see throughout this text, including that it is invariant under all basis transfor-
mations and that it is the limiting distribution for central limit theorem bounds.
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2 Bayes’ Rule

This topic is on Bayes’ Rule and Bayesian Reasoning. Bayes’ Rule is the key component in how to build
likelihood functions, which are key to evaluating models based on data. Bayesian Reasoning is surprisingly
different, much more about modeling uncertainty.

2.1 Bayes’ Rule

Given two events M and D, then Bayes’ Rule states

Pr(M | D) =
Pr(D |M) · Pr(M)

Pr(D)
.

This assumes nothing about the independence of M and D (otherwise its pretty uninteresting). To derive
this we use

Pr(M ∩D) = Pr(M | D)Pr(D)

and also

Pr(M ∩D) = Pr(D ∩M) = Pr(D |M)Pr(M),

combined to get Pr(M | D)Pr(D) = Pr(D |M)Pr(M), from which we can solve for Pr(M | D).

Example: Checking Bayes’ Rule

Consider two events M and D with the following joint probability table:

M = 1 M = 0

D = 1 0.25 0.5
D = 0 0.2 0.05

We can observe that indeed Pr(M | D) = Pr(M ∩D)/Pr(D) = 0.25
0.75 = 1

3 , which is equal to

Pr(D |M)Pr(M)

Pr(D)
=

.25
.2+.25(.2 + .25)

.25 + .5
=
.25

.75
=

1

3
.

But Bayes’ rule is not very interesting in the above example. In that example, it is actually more compli-
cated to calculate the right side of Bayes’ rule than it is the left side.
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Example: Cracked Windshield

Consider you bought a new car and its windshield was cracked, the eventW . If the car was assembled
at one of three factories A, B or C, you would like to know which factory was the most likely point
of origin.
Assume that in Utah 50% of cars are from factory A (that is Pr(A) = 0.5) and 30% are from factory
B (Pr(B) = 0.3), and 20% are from factory C (Pr(C) = 0.2).
Then you look up statistics online, and find the following rates of cracked windshields for each
factory – apparently this is a problem! In factory A, only 1% are cracked, in factory B 10% are
cracked, and in factory C 2% are cracked. That is Pr(W | A) = 0.01, Pr(W | B) = 0.1 and
Pr(W | C) = 0.02.
We can now calculate the probability the car came from each factory:

• Pr(A |W ) = Pr(W | A) · Pr(A)/Pr(W ) = 0.01 · 0.5/Pr(W ) = 0.005/Pr(W ).

• Pr(B |W ) = Pr(W | B) · Pr(B)/Pr(W ) = 0.1 · 0.3/Pr(W ) = 0.03/Pr(W ).

• Pr(C |W ) = Pr(W | C) · Pr(C)/Pr(W ) = 0.02 · 0.2/Pr(W ) = 0.004/Pr(W ).

We did not calculate Pr(W ), but it must be the same for all factory events, so to find the highest
probability factory we can ignore it. The probability Pr(B | W ) = 0.03/Pr(W ) is the largest, and
B is the most likely factory.

2.1.1 Model Given Data
In data analysis, M represents a ‘model’ and D as ’data.’ Then Pr(M | D) is interpreted as the probability
of model M given that we have observed D. A maximum a posteriori (or MAP) estimate is the model
M ∈ ΩM that maximizes Pr(M | D). That is

M∗ = arg max
M∈ΩM

Pr(M | D) = arg max
M∈ΩM

Pr(D |M)Pr(M)

Pr(D)
= arg max

M∈ΩM

Pr(D |M)Pr(M).

Thus, to use Bayes’ Rule, we can maximize Pr(M | D) using Pr(M) and Pr(M | D). We do not need
Pr(D) since our data is given to us and fixed for all models.

In some settings we may also ignore Pr(M), as we may assume all possible models are equally likely.
This is not always the case, and we’ll come back to this. Thus we just need to calculate Pr(D | M). Then,
in this setting L(M) = Pr(D |M) is called the likelihood of model M .

So what is a ‘model’ and what is ’data?’ A model is usually a simple pattern which we think data is
generated from, but then observed with some noise. Examples:

• The model M is a single point in Rd; the data is a set of points in Rd near M .
• linear regression: The model M is a line in R2; the data is a set of points such that for each x-

coordinate, the y-coordinate is the value of the line at that x-coordinate with some added noise in the
y-value.
• clustering: The model M is a small set of points in Rd; the data is a large set of points in Rd, where

each point is near one of the points in M .
• PCA: The model M is a k-dimensional subspace in Rd (for k � d); the data is a set of points in Rd,

where each point is near M .
• linear classification: The modelM is a halfspace in Rd; the data is a set of labeled points (with labels

+ or −), so the + points are mostly in M , and the − points are mainly not in M .
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Example: Gaussian MLE

Let the data D be a set of points in R1 : {1, 3, 12, 5, 9}. Let ΩM be R so that the model is a point
M ∈ R. If we assume that each data point is observed with independent Gaussian noise (with σ = 2,
so its pdf is described as g(x) = 1√

8π
exp(−1

8(M − x)2). Then

Pr(D |M) =
∏

x∈D
g(x) =

∏

x∈D

(
1√
8π

exp(−1

8
(M − x)2)

)
.

Recall that we can take the product Πx∈Dg(x) since we assume independence of x ∈ D! To find
M∗ = arg maxM Pr(D | M) is equivalent to arg maxM ln(Pr(D | M)), the log-likelihood which
is

ln(Pr(D |M)) = ln

(∏

x∈D

(
1√
8π

exp(−1

8
(M − x)2)

))
=
∑

x∈D

(
−1

8
(M − x)2

)
+|D| ln(

1√
8π

).

We can ignore the last term since it is independent of M . The first term is maximized when∑
x∈D(M − x)2 is minimized, which occurs precisely as E[D] = 1

|D|
∑

x∈D x, the mean of the
data set D. That is, the maximum likelihood model is exactly the mean of the data D, and is quite
easy to calculate.

2.2 Bayesian Inference
Bayesian inference focuses on a simplified version of Bayes’s Rule:

Pr(M | D) ∝ Pr(D |M) · Pr(M).

The symbol ∝ means proportional to; that is there is a fixed (but possibly unknown) constant factor c
multiplied on the right (in this case c = 1/Pr(D)) to make them equal: Pr(M | D) = c·Pr(D |M)·Pr(M).

However, we may want to use continuous random variables, so then strictly using probability Pr at a
single point is not always correct. So we can replace each of these with pdfs

p(M | D) ∝ f(D |M) · π(M).

Each of these terms have common names. As above, the conditional probability or pdf Pr(D |M) ∝ f(D |
M) is called the likelihood. The probability or pdf of the model Pr(M) ∝ π(M) is called the prior. And
the left hand side Pr(M | D) ∝ p(M | D) is called the posterior.

Again it is common to be in a situation where, given a fixed model M , it is possible to calculate the
likelihood f(D | M). And again, the goal is to be able to compute p(M | D), as this allows us to evaluate
potential models M , given the data we have seen D.

The main difference is a careful analysis of π(M), the prior – which is not necessarily assumed uniform
or “flat”. The prior allows us to encode our assumptions.
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Example: Average Height

Lets estimate the heightH of a typical U of U student. We can construct a data setD = {x1, . . . , xn}
by measuring the height of everyone in this class in inches. There may be error in the measurement,
and we are an incomplete set, so we don’t entirely trust the data.
So we introduce a prior π(M). Consider we read that the average height of an full grown person is
µM = 66 inches, with a standard deviation of σ = 6 inches. So we assume

π(M) = N(66, 6) =
1√
π72

exp(−(µM − 66)2/(2 · 62)),

is normally distributed around 66 inches.
Now, given this knowledge we adjust the MLE example from last subsection using this prior.

• What if our MLE estimate without the prior (e.g. 1
|D|
∑

x∈D x) provides a value of 5.5?
That means the data is very far from the prior. Usually this means something is wrong. We
could find arg maxM p(M | D) using this information, but that may give us an estimate of say
20 (that does not seem correct). A more likely explanation is a mistake somewhere: probably
we measured in feet instead of inches!

Another vestige of Bayesian inference is that we not only can calculate the maximum likelihood model
M∗, but we can also provide a posterior value for any model! This value is not an absolute probability (its
not normalized, and regardless it may be of measure 0), but it is powerful in other ways:

• We can say (under our model assumptions, which are now clearly stated) that one model M1 is twice
as likely as another M2, if p(M1 | D)/p(M2 | D) = 2.

• We can define a range of parameter values (with more work and under our model assumptions) that
likely contains the true model.

• We can now use more than one model for prediction of a value. Given a new data point x′ we may
want to map it onto our model as M(x′), or assign it a score of fit. Instead of doing this for just one
“best” model M∗, we can take a weighted average of all models, weighted by their posterior; this is
“marginalization.”

Weight for Prior. So how important is the prior? In the average height example, it will turn out to be worth
only (1/9)th of one student’s measurement. But we can give it more weight.
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Example: Weighted Prior for Height

Lets continue the example about the height of an average U of U student, and assume (as in the MLE
estimator example) the data is generated independently from a model M with Gaussian noise with
σ = 2. Thus the likelihood of the model, given the data is

f(D |M) =
∏

x∈D
g(x) =

∏

x∈D

(
1√
8π

exp(−1

8
(µM − x)2)

)
.

Now using that the prior of the model is π(M) = 1√
π72

exp(−(µM−66)2/72), the posterior is given
by

p(M | D) ∝ f(D |M) · 1√
π72

exp(−(µM − 66)2/72).

It is again easier to work with the log-posterior which is monotonic with the posterior, using some
unspecified constant C (which can be effectively ignored):

ln(p(M | D)) ∝ ln(f(D |M)) + ln(π(M)) + C

∝
∑

x∈D

(
−1

8
(µM − x)2)− 1

72
(µM − 66)2

)
+ C

∝ −
∑

x∈D
9(µM − x)2 + (µM − 66)2 + C

So the maximum likelihood estimator occurs at the average of 66 along with 9 copies of the student
data.

Why is student measurement data worth so much more?
We assume the standard deviation of the measurement error is 2, where as we assumed that the standard

deviation of the full population was 6. In other words, our measurements had variance 22 = 4, and the
population had variance 62 = 36 (technically, this is best to interpret at the variance when adapted to
various subpopulations, e.g., U of U students): that is 9 times as much.

If instead we assumed that the standard deviation of our prior is 0.1, with variance 0.01, then this is 400
times smaller than our class measurement error variance. If we were to redo the above calculations with this
smaller variance, we would find that this assumption weights the prior 400 times the effect of each student
measurement in the MLE.

So what happens with more data?
Lets say, this class gets really popular, and next year 1000 students sign up! Then again the student data

is overall worth more than the prior data. So with any prior, if we get enough data, it no longer becomes
important. But with a small amount of data, it can have a large influence on our model.
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3 Convergence

This topic will overview a variety of extremely powerful analysis results that span statistics, estimation
theorem, and big data. It provides a framework to think about how to aggregate more and more data to get
better and better estimates. It will cover the Central Limit Theorem (CLT), Chernoff-Hoeffding bounds, and
Probably Approximately Correct (PAC) algorithms.

3.1 Sampling and Estimation
Most data analysis starts with some data set; we will call this data set P . It will be composed of a set of n
data points P = {p1, p2, . . . , pn}.

But underlying this data is almost always a very powerful assumption, that this data comes iid from
a fixed, but usually unknown pdf, call this f . Lets unpack this: What does “iid” mean: Identically and
Independently Distributed. The “identically” means each data point was drawn from the same f . The
“independently” means that the first points have no bearing on the value of the next point.

Example: Polling

Consider a poll of n = 1000 likely voters in an upcoming election. If we assume each polled person
is chosen iid, then we can use this to understand something about the underlying distribution f , for
instance the distribution of all likely voters.
More generally, f could represent the outcome of a process, whether that is a randomized algorithm,
a noisy sensing methodology, or the common behavior of a species of animals. In each of these cases,
we essentially “poll” the process (algorithm, measurement, thorough observation) having it provide
a sample, and repeat many times over.

Here we will talk about estimating the mean of f . To discuss this, we will now introduce a random
variable X ∼ f ; a hypothetical new data point. The mean of f is the expected value of X: E[X].

We will estimate the mean of f using the sample mean, defined P̄ = 1
n

∑n
i=1 pi. The following diagram

represents this common process: from a unknown process f , we consider n iid random variables {Xi}
corresponding to a set of n independent observations {pi}, and take their average P̄ = 1

n

∑n
i=1 pi to estimate

the mean of f .

P̄ =
1
n

∑ {pi} ←
realize

{Xi} ∼
iid

f

Central Limit Theorem. The central limit theorem is about how well the sample mean approximates the
true mean. But to discuss the sample mean P̄ (which is a fixed value) we need to discuss random variables
{X1, X2, . . . , Xn}, and their mean X̄ = 1

n

∑n
i=1Xi. Note that again X̄ is a random variable. If we are to

draw a new iid data set P ′ and calculate a new sample mean P̄ ′ it will likely not be exactly the same as P̄ ;
however, the distribution of where this P̄ ′ is likely to be, is precisely X̄ . Arguably, this distribution is more
important than P̄ itself.

There are many formal variants of the central limit theorem, but the basic form is as follows:
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Central Limit Theorem: Consider n iid random variables X1, X2, . . . , Xn, where each Xi ∼ f
for any fixed distribution f with mean µ and bounded variance σ2. Then X̄ = 1

n

∑n
i=1Xi converges

to the normal distribution with mean µ = E[Xi] and variance σ2/n.

Lets highlight some important consequences:

• For any f (that is not too crazy, since σ2 is not infinite), then X̄ looks like a normal distribution.

• The mean of the normal distribution, which is the expected value of X̄ satisfies E[X̄] = µ, the mean
of f . This implies that we can use X̄ (and then also P̄ ) as a guess for µ.

• As n gets larger (we have more data points) then the variance of X̄ (our estimator) decreases. So
keeping in mind that although X̄ has the right expected value it also has some error, this error is
decreasing as n increases.

# adapted from: https://github.com/mattnedrich/CentralLimitTheoremDemo
import random
import matplotlib as mpl
mpl.use(’PDF’)
import matplotlib.pyplot as plt

def plot_distribution(distribution, file, title, bin_min, bin_max, num_bins):
bin_size = (bin_max - bin_min) / num_bins
manual_bins = range(bin_min, bin_max + bin_size, bin_size)
[n, bins, patches] = plt.hist(distribution, bins = manual_bins)
plt.title(title)
plt.xlim(bin_min, bin_max)
plt.ylim(0, max(n) + 2)
plt.ylabel("Frequency")
plt.xlabel("Observation")
plt.savefig(file, bbox_inches=’tight’)
plt.clf()
plt.cla()

minbin = 0
maxbin = 100
numbins = 50
nTrials = 1000

def create_uniform_sample_distribution():
return range(maxbin)

sampleDistribution = create_uniform_sample_distribution()

# Plot the original population distribution
plot_distribution(sampleDistribution, ’output/SampleDistribution.pdf’,

"Population Distribution", minbin, maxbin, numbins)

# Plot a sampling distribution for values of N = 2, 3, 10, and 30
n_vals = [2, 3, 10, 30]
for N in n_vals:

means = []
for j in range(nTrials):
sampleSum = 0;
for i in range(N):
sampleSum += random.choice(sampleDistribution)
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means.append(float(sampleSum)/ float(N))

title = "Sample Mean Distribution with N = %s" % N
file = "output/CLT-demo-%s.pdf" % N
plot_distribution(means, file, title, minbin, maxbin, numbins)

Example: Central Limit Theorem

Consider f as a uniform distribution over [0, 100]. If we create n samples {p1, . . . , pn} and their
mean P̄ , then repeat this 1000 times, we can plot the output in histograms:

0 20 40 60 80 100
Observation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fr
e
q
u
e
n
cy

Population Distribution

0 20 40 60 80 100
Observation

0

10

20

30

40

Fr
e
q
u
e
n
cy

Sample Mean Distribution with N = 2

0 20 40 60 80 100
Observation

0

10

20

30

40

50

Fr
e
q
u
e
n
cy

Sample Mean Distribution with N = 3

0 20 40 60 80 100
Observation

0

20

40

60

80

100

Fr
e
q
u
e
n
cy

Sample Mean Distribution with N = 10

0 20 40 60 80 100
Observation

0

20

40

60

80

100

120

140

160

Fr
e
q
u
e
n
cy

Sample Mean Distribution with N = 30

We see that starting at n = 2, the distributions look vaguely looks normal (in the technical sense
of a normal distribution), and that their standard deviations narrow as n increases.

Remaining Mysteries. There should still be at least a few aspects of this not clear yet: (1) What does
“convergence” mean? (2) How do we formalize or talk about this notion of error? (3) What does this say
about our data P̄ ?

First, convergence refers to what happens as some parameter increases, in this case n. As the number of
data points increase, as n “goes to infinity” then the above statement (X̄ looks like a normal distribution)
becomes more and more true. For small n, the distribution may not quite look like a normal, it may be more
bumpy, maybe even multi-modal. The statistical definitions of converge are varied, and we will not go into
them here, we will instead replace it with more useful phrasing in explaining aspects (2) and (3).

Second, the error now has two components. We cannot simply say that P̄ is at most some distance ε from
µ. Something crazy might have happened (the sample is random after all). And it is not useful to try to write
the probability that P̄ = µ; for equality in continuous distributions, this probability is indeed 0. But we can
combine these notions. We can say the distance between P̄ and µ is more than ε, with probability at most δ.
This is called “probably approximately correct” or PAC.

Third, we want to generate some sort of PAC bound (which is far more useful than “X̄ looks kind of like
a normal distribution”). Whereas a frequentist may be happy with a confidence interval and a Bayesian a
normal posterior, these two options are not directly available since again, X̄ is not exactly a normal. So we
will discuss some very common concentration of measure tools. These don’t exactly capture the shape of
the normal distribution, but provide upper bounds for its tails, and will allow us to state PAC bounds.

3.2 Probably Approximately Correct (PAC)
We will introduce shortly the three most common concentration of measure bounds, which provide increas-
ingly strong bounds on the tails of distributions, but require more and more information about the underlying
distribution f . Each provides a PAC bound of the following form:

Pr[|X̄ − E[X̄]| ≥ ε] ≤ δ.

That is, the probability that X̄ (which is some random variable, often a sum of iid random variables) is
further than ε to its expected value (which is µ, the expected value of f where Xi ∼ f ), is at most δ. Note
we do not try to say this probability is exactly δ, this is often too hard. In practice there are a variety of tools,
and a user may try each one, and see which ones gives the best bound.
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It is useful to think of ε as the error tolerance and δ as the probability of failure i.e., that we exceed the
error tolerance. However, often these bounds will allow us to write the required sample size n in terms of
ε and δ. This allows us to trade these two terms off for any fixed known n; we can allow a smaller error
tolerance if we are willing to allow more probability of failure, and vice-versa.

3.3 Concentration of Measure
We will formally describe these bounds, and give some intuition of why they are true (but not proofs). But
what will be the most important is what they imply. If you just know the distance of the expectation from
the minimal value, you can get a very weak bound. If you know the variance of the data, you can get a
stronger bound. If you know that the distribution f has a small and bounded range, then you can make the
probability of failure (the δ in PAC bounds) very very small.

Markov Inequality. Let X be a random variable such that X ≥ 0, that is it cannot take on negative values.
Then for any parameter α > 0

Pr[X > α] ≤ E[X]

α
.

Note this is a PAC bound with ε = α − E[X] and δ = E[X]/α, or we can rephrase this bound as follows:
Pr[X − E[X] > ε] ≤ δ = E[X]/(ε+ E[X]).

This bound can be seen true by considering balancing the pdf of X at E[X] (think of a waiter holding
a tray of food with weight of the food at various locations described by the probability distribution; the
waiter’s hand should be under the point E[X]). Then, more than α fraction of its mass cannot be greater
than E[X]/α since the rest is at least 0, and it cannot balance.

If we instead know that X ≥ b for some constant b (instead of X ≥ 0), then we state more generally
Pr[X > α] ≤ (E[X]− b)/(α− b).

Example: Markov Inequality

Consider the pdf f drawn in blue in the following figures, with E[X] for X ∼ f marked as a red dot.
The probability that X is greater than 5 (e.g. Pr[X ≥ 5]) is the shaded area.
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Notice that in both cases that Pr[X ≥ 5] is about 0.1. This is the quantity we want to bound by
above by δ. But since E[X] is much larger in the first case (about 2.25), then the bound δ = E[X]/α
is much larger, about 0.45. In the second case, E[X] is much smaller (about 0.6) so we get a much
better bound of δ = 0.12.

Chebyshev Inequality. Now let X be a random variable where we know Var[X], and E[X]. Then for
any parameter ε > 0

Pr[|X − E[X]| ≥ ε] ≤ Var[X]

ε2
.
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Again, this clearly is a PAC bound with δ = Var[X]/ε2. This bound is typically stronger than the Markov
one since δ decreases quadratically in ε instead of linearly.

Example: Chebyshev for IID Samples

Recall that for an average of random variables X̄ = (X1 + X2 + . . . + Xn)/n, where the Xis are
iid, and have variance σ2, then Var[X̄] = σ2/n. Hence

Pr[|X̄ − E[Xi]| ≥ ε] ≤
σ2

nε2
.

Consider now that we have input parameters ε and δ, our desired error tolerance and probability of
failure. If can draw Xi ∼ f (iid) for an unknown f (with known expected value and variance σ),
then we can solve for how large n needs to be: n = σ2/(ε2δ).

Chernoff-Hoeffding Inequality. Following the above example, we can consider a set of n iid random
variables X1, X2, . . . , Xn where X̄ = 1

n

∑n
i=1Xi. Now assume we know that each Xi lies in a bounded

domain [b, t], and let ∆ = t− b. Then for any parameter ε > 0

Pr[|X̄ − E[X̄]| > ε] ≤ 2 exp

(−2ε2n

∆2

)
.

Again this is a PAC bound, now with δ = 2 exp(−2ε2n/∆2). For a desired error tolerance ε and failure
probability δ, we can set n = (∆2/(2ε2)) ln(2/δ). Note that this has a similar relationship with ε as the
Chebyshev bound, but the dependence of n on δ is exponentially less for this bound.

Relating this all back to the Gaussian distribution in the CLT, the Chebyshev bound only uses the variance
information about the Gaussian, but the Chernoff-Hoeffding bound uses all of the “moments”: that it decays
exponentially.

These are the most basic and common PAC concentration of measure bounds, but are by no means ex-
haustive.
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Example: Uniform Distribution

Consider a random variable X ∼ f where f(x) = {1
2 if x ∈ [0, 2] and 0 otherwise.}, i.e, the Uni-

form distribution on [0, 2]. We know E[X] = 1 and Var[X] = 1
3 .

• Using the Markov Inequality, we can say Pr[X > 1.5] ≤ 1/(1.5) ≈ 0.6666 and Pr[X > 3] ≤
1/3 ≈ 0.33333.
or Pr[X − µ > 0.5] ≤ 2

3 and Pr[X − µ > 2] ≤ 1
3 .

• Using the Chebyshev Inequality, we can say that Pr[|X−µ| > 0.5] ≤ (1/3)/0.52 = 4
3 (which

is meaningless). But Pr[|X − µ| > 2] ≤ (1/3)/(22) = 1
12 ≈ 0.08333.

Now consider a set of n = 100 random variables X1, X2, . . . , Xn all drawn iid from the same pdf f
as above. Now we can examine the random variable X̄ = 1

n

∑n
i=1Xi. We know that µn = E[X̄] = µ

and that σ2
n = Var[X̄] = σ2/n = 1/(3n) = 1/300.

• Using the Chebyshev Inequality, we can say that Pr[|X̄ − µ| > 0.5] ≤ σ2
n/(0.5)2 = 1

75 ≈
0.01333, and Pr[|X̄ − µ| > 2] ≤ σ2

n/2
2 = 1

1200 ≈ 0.0008333.

• Using the Chernoff-Hoeffding bound, we can say that Pr[|X̄ − µ| > 0.5] ≤
2 exp(−2(0.5)2n/∆2) = 2 exp(−100/8) ≈ 0.0000074533, and Pr[|X̄ − µ| > 2] ≤
2 exp(−2(2)2n/∆2) = 2 exp(−200) ≈ 2.76 · 10−87.
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4 Linear Algebra Review

For this topic we quickly review many key aspects of linear algebra that will be necessary for the remainder
of the text.

4.1 Vectors and Matrices
For the context of data analysis, the critical part of linear algebra deals with vectors and matrices of real
numbers.

In this context, a vector v = (v1, v2, . . . , vd) is equivalent to a point in Rd. By default a vector will be a
column of d numbers (where d is context specific)

v =




v1

v2
...
vn




but in some cases we will assume the vector is a row

vT = [v1 v2 . . . vn].

An n× d matrix A is then an ordered set of n row vectors a1, a2, . . . an

A = [a1 a2 . . . an] =




− a1 −
− a2 −

...
− an −


 =




A1,1 A1,2 . . . A1,d

A2,1 A2,2 . . . A2,d
...

...
. . .

...
An,1 An,2 . . . An,d


 ,

where vector ai = [Ai,1, Ai,2, . . . , Ai,d], and Ai,j is the element of the matrix in the ith row and jth column.
We can write A ∈ Rn×d when it is defined on the reals.

A transpose operation (·)T reverses the roles of the rows and columns, as seen above with vector v. For
a matrix, we can write:

AT =



| | |
a1 a2 . . . an
| | |


 =




A1,1 A2,1 . . . An,1
A1,2 A2,2 . . . An,2

...
...

. . .
...

A1,n A2,d . . . An,d


 .
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Example: Linear Equations

A simple place these objects arise is in linear equations. For instance

3x1 −7x2 +2x3 = −2
−1x1 +2x2 −5x3 = 6

is a system of n = 2 linear equations, each with d = 3 variables. We can represent this system in
matrix-vector notation as

Ax = b

where

b =

[
−2
6

]
x =



x1

x2

x3


 and A =

[
3 −7 2
−1 2 −5

]
.

4.2 Addition
We can add together two vectors or two matrices only if they have the same dimensions. For vectors
x = (x1, x2, . . . , xd) ∈ Rd and y = (y1, y2, . . . , yd) ∈ Rd, then vector

z = x+ y = (x1 + y1, x2 + y2, . . . , xd + yd) ∈ Rd.

Similarly for two matrices A,B ∈ Rn×d, then C = A+B is defined where Ci,j = Ai,j +Bi,j for all i, j.

4.3 Multiplication
Multiplication only requires alignment along one dimension. For two matrices A ∈ Rn×d and B ∈ Rd×m
we can obtain a new matrix C = AB ∈ Rn×m where Ci,j , the element in the ith row and jth column of C
is defined

Ci,j =
d∑

k=1

Ai,kBk,j .

To multiply A times B (where A is to the left of B, the order matters!) then we require the row dimension
d of A to match the column dimension d of B. If n 6= m, then we cannot multiply BA. Keep in mind:

• Matrix multiplication is associative (AB)C = A(BC).
• Matrix multiplication is distributive A(B + C) = AB +AC.
• Matrix multiplication is not commutative AB 6= BA.

We can also multiply a matrix A by a scalar α. In this setting αA = Aα and is defined by a new matrix
B where Bi,j = αAi,j .

vector-vector products. There are two types of vector-vector products, and their definitions follow di-
rectly from that of matrix-matrix multiplication (since a vector is a matrix where one of the dimensions is
1). But it is worth highlighting these.

Given two column vectors x, y ∈ Rd, the inner product or dot product is written

xT y = x · y = 〈x, y〉 = [x1 x2 . . . xd]




y1

y2
...
yd


 =

d∑

i=1

xiyi,
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where xi is the ith element of x and similar for yi. This text will prefer the last notation 〈x, y〉 since the
same can be used for row vectors, and there is no confusion with multiplication in using ·; whether a vector
is a row or a column is often arbitrary.

Note that this operation produces a single scalar value. The dot product is a linear operator. So this means
for any scalar value α and three vectors x, y, z ∈ Rd we have

〈αx, y + z〉 = α〈x, y + z〉 = α (〈x, y〉+ 〈x, z〉) .

Example: Geometry of Dot Product

A dot product is one of my favorite mathematical operations! It encodes a lot of geometry. Consider
two vectors u = (3

5 ,
4
5) and v = (2, 1), with an angle θ between them. Then it holds

〈u, v〉 = length(u) · length(v) · cos(θ).

Here length(·) measures the distance from the origin. We’ll see how to measure length with a “norm”
‖ · ‖ soon.
Moreover, since the ‖u‖ = length(u) = 1, then we can also interpret 〈u, v〉 as the length of v
projected onto the line through u. That is, let πu(v) be the closest point to v on the line through
u (the line through u and the line segment from v to πu(v) make a right angle). Then 〈u, v〉 =
length(πu(v)) = ‖πu(v)‖.

u = (
3

5
,
4

5
)

v = (2, 1)

⇡u(v)

✓

For two column vectors x ∈ Rn and y ∈ Rd, the outer product is written

yTx =




x1

x2
...
xn


 [y1 y2 . . . yd] =




x1y1 x1y2 . . . x1yd
x2y1 x2y2 . . . x2yd

...
...

. . .
...

xny1 xny2 . . . xnyd


 ∈ Rn×d.

Note that the result here is a matrix, not a scalar.

matrix-vector products. Another important and common operation is a matrix-vector product. Given a
matrix A ∈ Rn×d and a vector x ∈ Rd, their product y = Ax ∈ Rn.

When A is composed of row vectors [a1; a2; . . . ; an], then it is useful to imagine this as transposing x
(which should be a column vector here, so a row vector after transposing), and taking the dot product with
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each row of A.

y = Ax =




− a1 −
− a2 −

...
− an −


x =




〈a1, x〉
〈a2, x〉

...
〈an, x〉


 .

4.4 Norms
The standard Euclidean norm of a vector v = (v1, v2, . . . , vd) ∈ Rd is defined

‖v‖ =

√√√√
d∑

i=1

v2
i =

√
〈v, v〉.

This measures the “straight-line” distance from the origin to the point at v. A vector v with norm ‖v‖ = 1
is said to be a unit vector; sometimes a vector x with ‖x‖ = 1 is said to be normalized.

However, a “norm” is a more generally concept. A class called Lp norms are well-defined for any param-
eter p ∈ [1,∞) as

‖v‖p =

(
d∑

i=1

|vi|p
)1/p

.

Thus, when no p is specified, it is assumed to be p = 2. It is also common to denote ‖v‖∞ = maxdi=1 |vi|.
Because subtraction is well-defined between vectors v, u ∈ Rd of the same dimension, then we can also

take the norm of ‖v− u‖p. While this is technically the norm of the vector resulting from the subtraction of
u from v; it also provides a distance between u and v. In the case of p = 2, then

‖u− v‖2 =

√√√√
d∑

i=1

(ui − vi)2

is precisely the straight-line (Euclidean) distance between u and v.
Moreover, all Lp norms define a distance Dp(u, v) = ‖u− v‖p, which satisfies a set of special properties

required for a distance to be a metric. This include:

• Symmetry: For any u, v ∈ Rd we have D(u, v) = D(v, u).
• Non-negativity: For any u, v ∈ Rd we have D(u, v) ≥ 0, and D(u, v) = 0 if and only if u = v.
• Triangle Inequality: For any u, v, w ∈ Rd we have D(u,w) +D(w, v) ≥ D(u, v).

We can also define norms for matrices A. These take on slightly different notational conventions. The
two most common are the spectral norm ‖A‖ = ‖A‖2 and the Frobenius norm ‖A‖F . The Frobenius norm
is the most natural extension of the p = 2 norm for vectors, but uses a subscript F instead. It is defined for
matrix A ∈ Rn×d as

‖A‖F =

√√√√
n∑

i=1

d∑

j=1

A2
i,j =

√√√√
n∑

i=1

‖ai‖2,

where Ai,j is the element in the ith row and jth column of A, and where ai is the ith row vector of A. The
spectral norm is defined for a matrix A ∈ Rn×d as

‖A‖ = ‖A‖2 = max
x∈Rd

‖Ax‖/‖x‖ = max
y∈Rn

‖yA‖/‖y‖.

Its useful to think of these x and y vectors as being unit vectors, then the denominator can be ignored (as
they are 1). Then we see that x and y only contain “directional” information, and the arg max vectors point
in the directions that maximize the norm.

An Introduction to Data Analysis through a Geometric Lens copyright: Jeff M. Phillips



4.5 Linear Independence
Consider a set of k vectors x1, x2, . . . , xk ∈ Rd, and a set of k scalars α1, α2, . . . , αk ∈ R. Then because of
linearity of vectors, we can write a new vector in Rd as

z =
k∑

i=1

αixi.

For a set of vectors X = {x1, x2, . . . , xk}, for any vector z where there exists a set of scalars α where z
can be written as the above summation, then we say z is linearly dependent on X . If z cannot be written
with any choice of αis, the we say z is linearly independent of X . All vectors z ∈ Rd which are linearly
dependent on X are said to be in its span.

span(X) =

{
z
∣∣∣ z =

k∑

i=1

αixi, αi ∈ R

}
.

If span(X) = Rd (that is for vectors X = x1, x2, . . . , xk ∈ Rd all vectors are in the span), then we say X
forms a basis.

Example: Linear Independence

Consider input vectors in a set X as

x1 =




1
3
4


 x2 =




2
4
1




And two other vectors

z1 =



−3
−5
2


 z2 =




3
7
1




Note that z1 is linearly dependent on X since it can be written as z1 = x1 − 2x2 (here α1 = 1 and
α2 = −2). However z2 is linearly independent from X since there are no scalars α1 and α2 so that
z2 = α1x1 + α2x2 (we need α1 = α2 = 1 so the first two coordinates align, but then the third
coordinate cannot).
Also the set X is linearly independent, since there is no way to write x2 = α1x1.

A set of vectors X = {x1, x2, . . . , xn} is linearly independent if there is no way to write any vector
xi ∈ X in the set with scalars {α1, . . . , αi−1, αi+1, . . . , αn} as the sum

xi =

n∑

j=1
j 6=i

αjxj

of the other vectors in the set.

4.6 Rank
The rank of a set of vectors X = {x1, . . . , xn} is the size of the largest subset X ′ ⊂ X which are linearly
independent. Usually we report rank(A) as the rank of a matrix A. It is defined as the rank of the rows of
the matrix, or the rank of its columns; it turns out these quantities are always the same.
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If A ∈ Rn×d, then rank(A) ≤ min{n, d}. If rank(A) = min{n, d}, then A is said to be full rank. For
instance, if d < n, then using the rows of A = [a1; a2; . . . ; an], we can describe any vector z ∈ Rd as the
linear combination of these rows: z =

∑n
i=1 αiai for some set {α1, . . . , αn}; in fact, we can set all but d of

these scalars to 0.

4.7 Inverse
A matrix A is said to be square if it has the same number of column as it has rows. A square matrix
A ∈ Rn×n may have an inverse denoted A−1. If it exists, it is a unique matrix which satisfies:

A−1A = I = AA−1

where I is the n× n identity matrix

I =




1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 1




= diag(1, 1, . . . , 1).

Note that I serves the purpose of 1 in scalar algebra, so for a scalar a then using a−1 = 1
a we have aa−1 =

1 = a−1a.
A matrix is said to be invertable if it has an inverse. Only square, full-rank matrices are invertable; and a

matrix is always invertable if it is square and full rank. If a matrix is not square, the inverse is not defined.
If a matrix is not full rank, then it does not have an inverse.

4.8 Orthogonality
Two vectors x, y ∈ Rd are orthogonal if 〈x, y〉 = 0. This means those vectors are at a right angle to each
other.

Example: Orthongonality

Consider two vectors x = (2,−3, 4,−1, 6) and y = (4, 5, 3,−7,−2). They are orthogonal since

〈x, y〉 = (2 · 4) + (−3 · 5) + (4 · 3) + (−1 · −7) + (6 · −2) = 8− 15 + 12 + 7− 12 = 0.

A square matrix U ∈ Rn×n is orthogonal if all of its columns [u1, u2, . . . , un] are normalized and are all
orthogonal with each other. It follows that

UTU = I = UUT

since for any normalized vector u that 〈u, u〉 = ‖u‖ = 1.
A set of columns (for instance those of an orthogonal U ) which are normalized and all orthogonal to each

other are said to be orthonormal. If U ∈ Rn×d and has orthonormal columns, then UTU = I (here I is
d× d) but UUT 6= I .

Orthogonal matrices are norm preserving under multiplication. That means for an orthogonal matrix
U ∈ Rn×n and any vector x ∈ Rn, then ‖Ux‖ = ‖x‖.

Moreover, the columns [u1, u2, . . . , un] of an orthogonal matrix U ∈ Rn×n form an basis for Rn. This
means that for any vector x ∈ Rn, there exists a set of scalars α1, . . . , αn such that x =

∑n
i=1 αiui. More

interestingly, we also have ‖x‖2 =
∑n

i=1 α
2
i .
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This can be interpreted as U describing a rotation (with possible mirror flips) to a new set of coordi-
nates. That is the old coordinates of x are (x1, x2, . . . , xn) and the coordinates in the new orthogonal basis
[u1, u2, . . . , un] are (α1, α2, . . . , αn).

4.9 Python numpy Example
Python provides an excellent library called numpy (pronounced ‘num-pie’) for handling arrays and matri-
ces, and performing linear basic algebra.

import numpy as np
from numpy import linalg as LA

#create an array, a row vector
v = np.array([1,2,7,5])
print v
#[1 2 7 5]
print v[2]
#7

#create a n=2 x d=3 matrix
A = np.array([[3,4,3],[1,6,7]])
print A
#[[3 4 3]
# [1 6 7]]
print A[1,2]
#7
print A[:, 1:3]
#[[4 3]
# [6 7]]

#adding and multiplying vectors
u = np.array([3,4,2,2])
#elementwise add
print v+u
#[4 6 9 7]
#elementwise multiply
print v*u
#[ 3 8 14 10]
# dot product
print v.dot(u)
# 35
print np.dot(u,v)
# 35

#matrix multiplication
B = np.array([[1,2],[6,5],[3,4]])
print A.dot(B)
#[[36 38]
# [58 60]]
x = np.array([3,4])
print B.dot(x)
#[11 38 25]

#norms
print LA.norm(v)
#8.88819441732
print LA.norm(v,1)
#15.0
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print LA.norm(v,np.inf)
#7.0
print LA.norm(A, ’fro’)
#10.9544511501
print LA.norm(A,2)
#10.704642743

#transpose
print A.T
#[[3 1]
# [4 6]
# [3 7]]
print x.T
#[3 4] (always prints in row format)

print LA.matrix_rank(A)
#2
C = np.array([[1,2],[3,5]])
print LA.inv(C)
#[[-5. 2.]
# [ 3. -1.]]
print C.dot(LA.inv(C))
#[[ 1.00000000e+00 2.22044605e-16] (nearly [[1 0]
# [ 0.00000000e+00 1.00000000e+00]] [0 1]] )
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5 Linear Regression

We introduce the basic model of linear regression. It builds a linear model to predict one variable from
one other variable or from a set of other variables. We will demonstrate how this simple technique can
extend to building potentially much more complex polynomial models. Then we will introduce the central
and extremely powerful idea of cross-validation. This method fundamentally changes the statistical goal of
validating a model, to characterizing the data.

5.1 Simple Linear Regression
We will begin with the simplest form of linear regression. The input is a set of n 2-dimensional data points
P = (x1, y1), (x2, y2), . . . , (xn, yn). The ultimate goal will be to predict the y values using only the x-
values. In this case x is the explanatory variable and y is the dependent variable.

In order to do this, we will “fit” a line through the data of the form

y = `(x) = ax+ b,

where a (the slope) and b (the intercept) are parameters of this line. The line ` is our “model” for this input
data.

Example: Fitting a line to height and weight

Consider the following data set that describes a set of heights and weights.

height (in) weight (lbs)
66 160
68 170
60 110
70 178
65 155
61 120
74 223
73 215
75 235
67 164

69 ?
60 62 64 66 68 70 72 74 76

100

120

140

160

180

200

220

240

Note that in the last entry, we have a height of 69, but we do not have a weight. If we were to guess
the weight in the last column, how should we do this?
We can draw a line (the red one) through the data points. Then we can guess the weight for a data
point with height 69, by the value of the line at height 69 inches: about 182 pounds.

Measuring error. The purpose of this line is not just to be close to all of the data (for this we will have to
wait for PCA and dimensionality reduction). Rather, its goal is prediction; specifically, using the explanatory
variable x to predict the dependent variable y.
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In particular, for every value x ∈ R, we can predict a value ŷ = `(x). Then on our dataset, we can
examine for each xi how close ŷi is to yi. This difference is called a residual:

ri = |yi − ŷi| = |yi − `(xi)|.

Note that this residual is not the distance from yi to the line `, but the distance from yi to the corresponding
point with the same x-value. Again, this is because our only goal is prediction of y. And this will be
important as it allows all of the techniques to be immune to the choice of units (e.g., inches or feet, pounds
or kilograms)

So the residual measures the error of a single data point, but how should we measure the overall error of
the entire data set? The common approach is the sum of squared errors:

SSE(P, `) =
n∑

i=1

r2
i =

n∑

i=1

(yi − ŷi)2 =
n∑

i=1

(yi − `(xi))2.

Why is this the most common measure? Here are 3 explanations?

• The sum of squared errors was the optimal result for a single point estimator under Gaussian noise
using Bayesian reasoning, when there was assumed Gaussian noise (See T2). In that case the answer
was simply the mean of the data.

• If you treat the residuals as a vector r = (r1, r2, . . . , rn), then the standard way to measure total size

of a vector r is through its norm ‖r‖, which is most commonly its 2-norm ‖r‖ = ‖r‖2 =
√∑n

i=1 r
2
i .

The square root part is not so important (it does not change which line ` minimizes this error), so
removing this square root, we are left with SSE.

• For this specific formulation, there is a simple closed form solution (which we will see next) for `.
And in fact, this solution will generalize to many more complex scenarios.

There are many other formulations of how best to measure error for the fit of a line (and other models),
but we will not cover them in this class.

Solving for `. To solve for the line which minimizes SSE(P, `) there is a very simply solution, in two
steps. Calculate averages x̄ = 1

n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi, and create centered n-dimension vectors

P̄x = (x1 − x̄, x2 − x̄, . . . , xn − x̄) for all x-coordinates and Py = (y1 − ȳ, y2 − ȳ, . . . , yn − ȳ) for all
y-coordinates.

1. Set a = 〈P̄y, P̄x〉/‖P̄x‖2

2. Set b = ȳ − ax̄

This defines `(x) = ax+ b.
We will not give the full proof of why this is optimal solution (it can be shown by expanding out the SSE

expression, taking the derivative, and solving for 0), but we will give a couple points of intuition.
First lets examine the intercept

b =
1

n

n∑

i=1

(yi − axi) = ȳ − ax̄

This setting of b ensures that the line y = `(x) = ax + b goes through the point (x̄, ȳ) at the center of the
data set since ȳ = `(x̄) = ax̄+ b.
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Second, to understand how the slope a is chosen, it is illustrative to reexamine the dot product as

a =
〈P̄y, P̄x〉
‖x‖2 =

‖P̄y‖ · ‖P̄x‖ · cos θ

‖P̄x‖2
=
‖P̄y‖
‖P̄x‖

cos θ,

where θ is the angle between the n-dimensional vectors y and x. Now in this expression, the ‖P̄y‖/‖P̄x‖
captures how much on (root-squared) average y increases as x does (the rise-over-run interpretation of
slope). However, we may want this to be negative if there is a negative correlation between P̄x and P̄y, or
really this does not matter much if there is no correlation. So the cos θ term captures the correlation after
normalizing the units of x and y. Again, this is not a formal proof, but hopefully provides some insight.

In python. This is quite easy to demonstrate in python.

import numpy as np

x = np.array([66, 68, 65, 70, 65, 62, 74, 70, 71, 67])
y = np.array([160, 170, 159, 188, 150, 120, 233, 198, 201, 164])

ave_x = np.average(x)
ave_y = np.average(y)

#first center the data points
xc = x - ave_x
yc = y - ave_x

a = xc.dot(yc)/xc.dot(xc)
b = ave_y - a*ave_x
print a, b

#or with scipy
from scipy import polyfit
(a,b)=polyfit(x,y,1)
print a, b

#predict weight at x=69
w=a*69+b

5.2 Linear Regression with Multiple Explanatory Variables
Magically, using linear algebra, everything extends gracefully to using more than one explanatory variables.
Now consider a set of d explanatory variables x1, x2, . . . , xd, and one dependent variable y. We would now
like to use all of these variables at once to make a single (linear) prediction about the variable y. That is, we
would like to create a model

y = M(x1, x2, . . . , xd) = α0 +

d∑

i=1

αixi

= α0 + α1x1 + α2x2 + . . .+ αdxd.

In this notation α0 serves the purpose of the intercept b, and all of the αis replace the single coefficient a in
the simple linear regression. Now we have described a more complex linear model M .
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Example: Predicting customer value

A website specializing in dongles (dongles-r-us.com) wants to predict the total dollar amount that
visitors will spend on their site. It has installed some software that can track three variables:

• time (the amount of time on the page in seconds): x1,
• jiggle (the amount of mouse movement in cm): x2, and
• scroll (how far they scroll the page down in cm): x3.

Also, for a set of past customers they have recorded the
• sales (how much they spend on dongles in cents): y.

We see a portion of their data set here with n = 11 customers:

time: x1 jiggle: x2 scroll: x3 sales: y
232 33 402 2201
10 22 160 0

6437 343 231 7650
512 101 17 5599
441 212 55 8900
453 53 99 1742
2 2 10 0

332 79 154 1215
182 20 89 699
123 223 12 2101
424 32 15 8789

To build a model, we recast the data as an 11 × 4 matrix X = [1, x1, x2, x3]. We let y be the
11-dimensional column vector.

X =




1 232 33 402
1 10 22 160
1 6437 343 231
1 512 101 17
1 441 212 55
1 453 53 99
1 2 2 10
1 332 79 154
1 182 20 89
1 123 223 12
1 424 32 15




y =




2201
0

7650
5599
8900
1742

0
1215
699
2101
8789




The goal is to learn the 4-dimensional column vector α = [α0;α1;α2, α3] so

y ≈ Xα.

Setting α = (XTX)−1XT y obtains (roughly) α0 = 262, α1 = 0.42, α2 = 12.72, and α3 =
−6.50. This implies an average customer with no interaction on the site generates α0 = $2.62.
That time does not have a strong effect here (only a coefficient α1 at only 0.42), but jiggle has a
strong correlation (with coefficient α2 = 12.72, this indicates 12 cents for every centimeter of mouse
movement). Meanwhile scroll has a negative effect (with coefficient α3 = −6.5); this means that
the more they scroll, the less likely they are to spend (just browsing dongles!).
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Given a data point x = (x1, x2, . . . , xd), we can again evaluate our prediction ŷ = M(x) using the
residual value ri = |yi − ŷi| = |yi = M(xi)|. And to evaluate a set of n data points, it is standard to
consider the sum of squared error as

SSE(X, y,M) =
n∑

i=1

r2
i =

n∑

i=1

(yi −M(xi))
2.

To obtain the coefficients which minimize this error, we can now do so with very simple linear algebra.
First we construct a n × (d + 1) data matrix X = [1, x1, x2, . . . , xd], where the first column 1 is the

all ones column vector [1; 1; . . . ; 1]. The next d columns describe for the ith row, the data values of the
explanatory variables x1 through xd for the ith data point. Then we let y be a n-dimensional column vector
with all data for the dependent variable. Now we can simply calculate the (d + 1)-dimensional column
vector α = [α0;α1; . . . ;αd] as

α = (XTX)−1XT y.

Let us compare to the simple case where we have 1 explanatory variable. The (XTX)−1 term replaces the
1

‖P̄x‖2
term. The XT y replaces the dot product 〈P̄y, P̄x〉. And we do not need to separately solve for the

intercept b, since we have created a new column in X of all 1s. Now for any dependent data values, we
multiply the found coefficient α0 by an imaginary 1 data value.

In python: We can directly write this in python as

import numpy as np
from numpy import linalg as LA

# directly
alpha = np.dot(np.dot(LA.inv(np.dot(X.T,X)),X.T),y.T)

# or with LA.lstsq
alpha = LA.lstsq(X,y)[0]

Or in many other ways.

5.3 Polynomial Regression
Sometimes linear relations are not sufficient to capture the true pattern going on in the data with even a
single dependent variable x. Instead we would like to build a model of the form:

ŷ = M2(x) = α0 + α1x+ α2x
2

or more generally for some polynomial of degree p

ŷ = Mp(x) = α0 + α1x+ α2x
2 + . . .+ αpx

p

= α0 +

p∑

i=1

αix
i.
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Example: Predicting Height and Weight with Polynomials

We found more height and weight data, in addition to the ones in the height-weight example above.

height (in) weight (lbs)
61.5 125
73.5 208
62.5 138
63 145
64 152
71 180
69 172

72.5 199
72 194

67.5 172

60 62 64 66 68 70 72 74 76
100

120

140

160

180

200

220

240
degree 1 fit

But can we do better if we fit with a polynomial?

60 62 64 66 68 70 72 74 76
100

120

140

160

180

200

220

240
degree 2 fit

60 62 64 66 68 70 72 74 76
100

120

140

160

180

200

220

240
degree 3 fit

60 62 64 66 68 70 72 74 76
100

120

140

160

180

200

220

240
degree 4 fit

60 62 64 66 68 70 72 74 76
100

120

140

160

180

200

220

240
degree 5 fit

60 62 64 66 68 70 72 74 76
100

120

140

160

180

200

220

240
degree 10 fit

60 62 64 66 68 70 72 74 76
100

120

140

160

180

200

220

240
degree 15 fit

Again we can measure error for a single data point pi = (xi, yi) as a residual as ri = |ŷ − yi| =
|Mp(xi)− yi| and the error on n data points as the sum of squared residuals

SSE(P,Mp) =
n∑

i=1

r2
i =

n∑

i=1

(Mp(xi)− yi)2.

Under this error measure, it turns out we can again find a simple solution for the residualsα = [α0, α1, . . . , αp].
For each dependent variable data value x we create a (p+ 1)-dimensional vector

v = (1, x, x2, . . . , xp).
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And then for n data points (x1, y1), . . . , (xn, yn) we can create an n× (p+ 1) data matrix

Xp =




1 x1 x2
1 . . . xp1

1 x2 x2
2 . . . xp2

...
...

...
. . .

...
1 xn x2

n . . . xpn


 y =




y1

y2
...
vn


 .

Then we can solve the same way as if each data value raised to a different power was a different dependent
variable. That is we can solve for the coefficients α = [α0;α1;α2; . . . ;αn] as

α = (XT
p Xp)

−1XT
p y.

5.4 Cross Validation
So how do we choose the correct value of p, the degree of the polynomial fit?

A (very basic) statistical (hypothesis testing) approach may be choose a model of the data (the best fit
curve for some polynomial degree p, and assume Gaussian noise), then calculate the probability that the
data fell outside the error bounds of that model. But maybe many different polynomials are a good fit?

In fact, if we choose p as n − 1 or greater, then the curve will polynomially interpolate all of the points.
That is, it will pass through all points, so all points have a residual of exactly 0 (up to numerical precision).
This is the basis of a lot of geometric modeling (e.g., for CAD), but bad for data modeling.

Example: Simple polynomial example

Consider the simple data set of 9 points

x 1 2 3 4 5 6 7 8 9
y 4 6 8.2 9 9.5 11 11.5 12 11.2

With the following polynomial fits for p = {1, 2, 3, 4, 5, 8}. Believe your eyes, for p = 8, the curve
actually passes through each and every point exactly.

0 2 4 6 8 10
0

2

4

6

8

10

12

14

degree 1 fit

0 2 4 6 8 10
0

2

4

6

8

10

12

14

degree 2 fit

0 2 4 6 8 10
0

2

4

6

8

10

12

14

degree 3 fit

0 2 4 6 8 10
0

2

4

6

8

10

12

14

degree 4 fit

0 2 4 6 8 10
0

2

4

6

8

10

12

14

degree 5 fit

0 2 4 6 8 10
0

2

4

6

8

10

12

14

degree 8 fit

Recall, our goal was for a new data point with only an x value to predict its y-value. Which do you
think does the best job?
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Generalization and Cross-Validation. Our ultimate goal in regression is generalization (how well do we
do on new data), not SSE! Using some error measure (SSE) to fit a line or curve, is a good proxy for what
we want, but in many cases (as with polynomial regression), it can be abused. We want to know how our
model will generalize to new data. How would we measure this without new data?

The solution is cross-validation. In the simplest form, we randomly split our data into training data (on
which we build a model) and testing data (on which we evaluate our model). The testing serves to estimate
how well we would do on future data which we do not have.

• Why randomly?: Because you do not want to bias the model to do better on some parts than other in
how you choose the split. Also, since we assume the data elements come iid from some underlying
distribution, then the test data is also iid if you chose it randomly.

• How large should the test data be?: It depends on the data set. Both 10% and 33% are common.

Let (X, y) be the full data set (with n rows of data), and we split it into data sets (Xtrain, ytrain) and
(Xtest, ytest) with ntrain and ntest rows, respectively. With n = ntrain + ntest. Next we build a model with the
training data, e.g.,

α = (XT
trainXtrain)−1XT

trainytrain.

Then we evaluate the model Mα on the test data Xtest, often using SSE(Xtest, ytest,Mα) as

SSE(Xtest, ytest,Mα) =
∑

(xi,yi)∈(Xtest,ytest)

(yi −Mα(xi))
2 =

∑

(xi,yi)∈(Xtest,ytest)

(yi − 〈(xi; 1), α〉)2.

We can use the testing data for two purposes:

• To estimate how well our model would perform on new data, yet unseen. That is the predicted residual
of a new data point is precisely SSE(Xtest, ytest,Mα)/ntest.

• To choose the correct parameter for a model (which p to use)?

Its important to keep in mind that we should not use the same (Xtest, ytest) to do both tasks. If we choose
a model with (Xtest, ytest), then we should reserve even more data for predicting the generalization error.
When using the test data to choose a model parameter, the it is being used to build the model; thus evaluating
generalization with this same data can suffer the same fate as testing and training with the same data.

So how should we choose the best p? We calculate models Mαp for each value p on the same training
data. Then calculate the model error SSE(Xtest, ytest,Mαp) for each p, and see which has the smallest value.
That is we train on (Xtrain, ytrain) and test(evaluate) on (Xtest, ytest).

An Introduction to Data Analysis through a Geometric Lens copyright: Jeff M. Phillips



Example: Simple polynomial example with Cross Validation

Now split our data sets into a train set and a test set:

train:
x 2 3 4 6 7 8
y 6 8.2 9 11 11.5 12

test:
x 1 5 9
y 4 9.5 11.2

With the following polynomial fits for p = {1, 2, 3, 4, 5, 8} generating model Mαp on the test data.
We then calculate the SSE(xtest, ytest,Mαp) score for each (as shown):

0 2 4 6 8 10
0
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8
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degree 1 fit | SSE 17.600
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degree 5 fit | SSE 101.513
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degree 8 fit | SSE 46.422

And the polynomial model with degree p = 2 has the lowest SSE score of 2.749. It is also the
simplest model that does a very good job by the “eye-ball” test. So we would choose this as our
model.

Leave-one-out Cross Validation. But, not training on the test data means that you use less data, and your
model is worse! You don’t want to waste this data!

If your data is very large, then leaving out 10% is not a big deal. But if you only have 9 data points it can
be. The smallest the test set could be is 1 point. But then it is not a very good representation of the full data
set.

The alternative is to create n different training sets, each of size n−1 (X1,train, X2,train, . . . , Xn,train), where
Xi,train contains all points except for xi, which is a one-point test set. Then we build n different models
M1,M2, . . . ,Mn, evaluate each model Mi on the one test point xi to get an error Ei = (yi−Mi(xi))

2, and
average their errors E = 1

n

∑n
i=1Ei. Again, the parameter with the smallest associated average error E is

deemed the best. This allows you to build a model on as much data as possible, while still using all of the
data to test.

However, this requires roughly n times as long to compute as the other techniques, so is often too slow
for really big data sets.
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import matplotlib as mpl
mpl.use(’PDF’)
import matplotlib.pyplot as plt
import scipy as sp
import numpy as np
import math
from numpy import linalg as LA

def plot_poly(x,y,xE,yE,p):
plt.scatter(x,y, s=80, c="blue")
plt.scatter(xE,yE, s=20, c="green")
plt.axis([0,10,0,15])

s=sp.linspace(0,10,101)

coefs=sp.polyfit(x,y,p)
ffit = np.poly1d(coefs)
plt.plot(s,ffit(s),’r-’,linewidth=2.0)

#evaluate on xE, yE
resid = ffit(xE)
RMSE = LA.norm(resid-yE)
SSE = xE.size * RMSE * RMSE

title = "degree %s fit | SSE %0.3f" % (p, SSE)
plt.title(title)
file = "CVpolyReg%s.pdf" % p
plt.savefig(file, bbox_inches=’tight’)
plt.clf()
plt.cla()

# train data
xT = np.array([2, 3, 4, 6, 7, 9])
yT = np.array([6, 8.2, 9, 11, 11.5, 11.2])

#test data
xE = np.array([1, 5, 8])
yE = np.array([4, 9.5, 12])

p_vals = [1,2,3,4,5,8]
for i in p_vals:

plot_poly(xT,yT,xE,yE,i)
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6 Gradient Descent

In this topic we will discuss optimizing over general functions f . Typically the function is defined f : Rd →
R; that is its domain is multi-dimensional (in this case d-dimensional) and output is a real scalar (R). This
often arises to describe the “cost” of a model which has d parameters which describe the model (e.g., degree
(d − 1)-polynomial regression) and the goal is to find the parameters with minimum cost. Although there
are special cases where we can solve for these optimal parameters exactly, there are many cases where we
cannot. What remains in these cases is to analyze the function f , and try to find its minimum point. The
most common solution for this is gradient descent where we try to “walk” in a direction so the function
decreases until we no-longer can.

6.1 Functions
We review some basic properties of a function f : Rd → R. Again, the goal will be to unveil abstract tools
that are often easy to imagine in low dimensions, but automatically generalize to high-dimensional data. We
will first provide definitions without any calculous.

Let Br(x) define a Euclidean ball around a point x of radius r. That is, it includes all points {y ∈ Rd |
‖x− y‖ ≤ r}, within a Euclidean distance of r from x. We will use Br(x) to define a local neighborhood
around a point x. The idea of “local” is quite flexible, and we can use any value of r > 0, basically it can be
as small as we need it to be, as long as it is strictly greater than 0.

Minima and maxima. A local maximum of f is a point x ∈ Rd so for some neighborhood Br(x), all
points y ∈ Br(x) have smaller (or equal) function value than at x: f(y) ≤ f(x). A local maximum of f is
a point x ∈ Rd so for some neighborhood Br(x), all points y ∈ Br(x) have larger (or equal) function value
than at x: f(y) ≥ f(x). If we remove the ”or equal” condition for both definitions for y ∈ Br(x), y 6= x,
we say the maximum or minimum points are strict.

A point x ∈ Rd is a global maximum of f if for all y ∈ Rd, then f(y) ≤ f(x). Likewise, a point x ∈ Rd
is a global minimum if for all y ∈ Rd, then f(y) ≥ f(x). There may be multiple global minimum and
maximum. If there is exactly one point x ∈ Rd that is a global minimum or global maximum, we again say
it is strict.

When we just use the term minimum or maximum (without local or global) it implies a local minimum or
maximum.

Focusing on a function restricted to a closed and bounded subset S ⊂ Rd, if the function is continuous
(we won’t formally define this, but it likely means what you think it does), then the function must have a
global minimum and a global maximum. It may occur on the boundary of S.

A saddle point is a type of point x ∈ Rd so that within any neighborhood Br(x), it has points y ∈ Br(x)
with f(y) < f(x) (the lower points) and y′ ∈ Br(x) with f(y′) > f(x) (the upper points). In particular,
it is a saddle if there are disconnected regions of upper points (and of lower points). For d = 1, then there
can be no saddle points. If these regions are connected, and it is not a minimum or maximum, then it is a
regular point.

For an arbitrary (or randomly) chosen point x, it is usually a regular point (except for examples you are
unlikely to encounter, the set of minimum, maximum, and saddle points are finite, while the set of regular
points is infinite).

39



Example: Continuous Functions

Here we show some example functions, where the x-axis represents a d-dimensional space. The first
function has local minimum and maximum. The second function has a constant value, so every point
is a global minimum and a global maximum. The third function f is convex, which is demonstrated
with the line segment between points (p, f(p)) and (q, f(q)) is always above the function f .

R

x 2 Rd

global minimum

local minimum

local maximum

R

x 2 Rd

global maximum

global minimum

R

x 2 Rd pq

1
3 (p, f(p)) + 2

3 (q, f(q))

Convex functions. In many cases we will assume (or at least desire) that our function is convex.
To define this it will be useful to define a line ` ⊂ Rd as follows with any two points p, q ∈ Rd. Then for

any scalar α ∈ R, a line ` is the set of points

` = {x = αp+ (1− α)q | α ∈ R and p, q ∈ Rd}.

When α ∈ [0, 1], then this defines the line segment between p and q.
A function is convex if for any two points p, q ∈ Rd, on the line segment between them has value less

than (or equal) to the values at the weighted average of p and q. That is, it is convex if

For all p, q ∈ R and for all α ∈ [0, 1] f(αp+ (1− α)q) ≤ αf(p) + (1− α)f(q).

Removing the (or equal) condition, the function becomes strictly convex.
There are many very cool properties of convex functions. For instance, for two convex functions f and g,

then h(x) = f(x) + g(x) is convex and so is h(x) = max{f(x), g(x)}. But one will be most important for
us:

• Any local minimum of a convex function will also be a global minimum. A strictly convex function
will have at most a single minimum: the global minimum.

This means if we find a minimum, then we must have also found a global minimum (our goal).

6.2 Gradients
For a function f(x) = f(x1, x2, . . . , xd), and a unit vector u = (u1, u2, . . . , ud), then the directional
derivative is defined

∇uf(x) = lim
h→0

f(x+ hu)− f(x)

h
.

We are interested in functions f which are differentiable; this implies that ∇uf(x) is well-defined for all x
and u. The converse is not necessarily true.

Let e1, e2, . . . , ed ∈ Rd be a specific set of unit vectors so that ei = (0, 0, . . . , 0, 1, 0, . . . , 0) where for ei
the 1 is in the ith coordinate.

Then define
∇if(x) = ∇eif(x) =

d

dxi
f(x).
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It is the derivative in the ith coordinate, treating all other coordinates as constants.
We can now, for a differentiable function f , define the gradient of f as

∇f =
df

dx1
e1 +

df

dx2
e2 + . . .+

df

dxd
ed =

(
df

dx1
,

df

dx2
, . . . ,

df

dxd

)
.

Note that∇f is a function from Rd → Rd, which we can evaluate at any point x ∈ Rd.

Example: Gradient

Consider the function f(x, y, z) = 3x2 − 2y3 − 2xez . Then ∇f = (6x − 2ez,−6y2,−2xez) and
∇f(3,−2, 1) = (18− 2e, 24,−6e).

Linear approximation. From the gradient we can easily recover the directional derivative of f at point x,
for any direction (unit vector) u as

∇uf(x) = 〈∇f(x), u〉.

This implies the gradient describes the linear approximation of f at a point x. The slope of the tangent plane
of f at x in any direction u is provided by∇uf(x).

Hence, the direction which f is increasing the most at a point x is the unit vector u where ∇uf(x) =
〈∇f(x), u〉 is the largest. This occurs at∇f(x) = ∇f(x)/‖∇f(x)‖, the normalized gradient vector.

To find the minimum of a function f , we then typically want to move from any point x in the direction
−∇f(x); this is the direction of steepest descent.

6.3 Gradient Descent
Gradient descent is a family of techniques that, for a differentiable function f : Rd → R, try to identify
either

min
x∈Rd

f(x) and/or x∗ = arg min
x∈Rd

f(x).

This is effective when f is convex and we do not have a “closed form” solution x∗. The algorithm is iterative,
in that it may never reach the completely optimal x∗, but it keeps getting closer and closer.

Algorithm 6.3.1 Gradient Descent(f, xstart)

initialize x(0) = xstart ∈ Rd.
repeat
x(k+1) := x(k) − γk∇f(x(k))

until (‖∇f(x(k))‖ ≤ τ )
return x(k)

Basically, for any starting point x(0) the algorithm moves to another point in the direction opposite to the
gradient – in the direction that locally decreases f the fastest.

Stopping condition. The parameter τ is the tolerance of the algorithm. If we assume the function is
differentiable, then at the minimum x∗, we must have that∇f(x) = (0, 0, . . . , 0). So close to the minimum,
it should also have a small norm. The algorithm may never reach the true minimum (and we don’t know
what it is, so we cannot directly compare against the function value). So we use ‖∇f‖ as a proxy.

In other settings, we may run for a fixed number T steps.
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6.3.1 Learning Rate
The most critical parameter of gradient descent is γ, the learning rate. In many cases the algorithm will keep
γk = γ fixed for all k. It controls how fast the algorithm works. But if it is too large, when we approach the
minimum, then the algorithm may go too far, and overshoot it. How should we choose γ?

Lipschitz bound. We say a function g : Rd → Rk is L-Lipschitz if for all x, y ∈ Rd that

‖g(x)− g(y)‖ ≤ L‖x− y‖.

If∇f is L-Lipschitz, and we set γ ≤ 1
L , then gradient descent will converge to a stationary point. Moreover,

if f is convex with global minimum x∗, then after k = O(1/ε) steps we can guarantee that

f(x(k))− f(x∗) ≤ ε.

A function f : Rd → R is η-strongly convex with parameter η > 0 if for all x ∈ Rd and any unit vector
u ∈ Rd (that is ‖u‖ = 1) then

〈∇f(x), u〉 ≥ η.
For an η-strongly convex function f with global minimum x∗, gradient descent with learning rate γ ≤
2/(η + L) after only k = O(log(1/ε)) steps will achieve

f(x(k))− f(x∗) ≤ ε.

The constant in k = O(log(1/ε)) depends on the condition number L/η; recall that for any unit vector u we
have L ≥ 〈∇f(x), u〉 ≥ η. When an algorithm converges at such a rate, it is known as linear convergence
since the log-error log(f(x(k))− f(x∗)) looks like a linear function of k.

Line search. In other cases, we can search for γk at each step. Once we have computed the gradient
∇f(x(k)) then we have reduced the high-dimensional minimization problem to a one-dimensional problem.
Note if f is convex, then f restricted to this one-dimensional search is also convex. We still need to find the
minimum of an unknown function, but we can perform some procedure akin to binary search. We first find
a value γ′ such that

f
(
x(k) − γ′∇f(x(k))

)
> f(x(k))

then we keep subdividing the region [0, γ′] into pieces which must contain the minimum (for instance the
golden section search keeps dividing by the golden ratio).

In other situations, we can solve for the optimal γk exactly at each step. This is the case if we can again
analytically take the derivative d

dγ

(
f(x(k))− γ∇f(x(k))

)
and solve for the γ where it is equal to 0.

Adjustable rate. In practice, line search is often slow. Also, we may not have a Lipschitz bound. It is often
better to try a few fixed γ values, probably being a bit conservative. As long as f(x(k)) keep decreasing, it
works well. This also may alert us if there there is more than one local minimum if the algorithm converges
to different locations.

An algorithm called “backtracking line search” automatically tunes the parameter γ. It uses a fixed
parameter β ∈ (0, 1) (preferably in (0.1, 0.8); for instance use β = 3/4). Start with a large step size γ (e.g.,
γ = 1). Then at each step of gradient descent at location x, if

f(x− γ∇f(x)) > f(x)− γ

2
‖∇f(x)‖2

then update γ = βγ. This shrinks γ over the course of the algorithm to ensure it will satisfy the condition
for linear convergence.
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Example: Gradient Descent with Fixed Learning Rate

Consider the function
f(x, y) = (

3

4
x− 3

2
)2 + (y − 2)2 +

1

4
xy

with gradient

∇f(x, y) =

(
9

8
x− 9

4
+

1

4
y , 2y − 4 +

1

4
x

)

We run gradient descent for 10 iterations within initial position (5, 4), while varying the learning rate
in the range γ = {0.01, 0.1, 0.2, 0.3, 0.5, 0.75}.

0 1 2 3 4 5
0

1

2

3

4

5
alpha 0.01 | final grad 5.764

0 1 2 3 4 5
0

1

2

3

4

5
alpha 0.10 | final grad 1.305

0 1 2 3 4 5
0

1

2

3

4

5
alpha 0.20 | final grad 0.342

0 1 2 3 4 5
0

1

2

3

4

5
alpha 0.30 | final grad 0.092

0 1 2 3 4 5
0

1

2

3

4

5
alpha 0.50 | final grad 0.003

0 1 2 3 4 5
0

1

2

3

4

5
alpha 0.75 | final grad 0.028

We see that with γ very small, the algorithm does not get close to the minimum. When γ is too large,
then the algorithm jumps around a lot, and is in danger of not converging. But at a learning rate of
γ = 0.5 it converges fairly smoothly and reaches a point where ‖∇f(x, y)‖ is very small. Using
γ = 0.5 almost overshoots in the first step; γ = 0.3 is smoother, and its probably best to use a curve
that looks smooth like that one, but with a few more iterations.

import matplotlib as mpl
mpl.use(’PDF’)
import numpy as np
import matplotlib.pyplot as plt
from numpy import linalg as LA

def func(x,y):
return (0.75*x-1.5)**2 + (y-2.0)**2 + 0.25*x*y

def func_grad(vx,vy):
dfdx = 1.125*vx - 2.25 + 0.25*vy
dfdy = 2.0*vy - 4.0 + 0.25*vx
return np.array([dfdx,dfdy])

#prepare for contour plot
xlist = np.linspace(0, 5, 26)
ylist = np.linspace(0, 5, 26)
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x, y = np.meshgrid(xlist, ylist)
z = func(x,y)
lev = np.linspace(0,20,21)

#iterate location
v_init = np.array([5,4])
num_iter = 10
values = np.zeros([num_iter,2])

for alpha in [0.01, 0.1, 0.2, 0.3, 0.5, 0.75]:
values[0,:] = v_init
v = v_init

# actual gradient descent algorithm
for i in range(1,num_iter):
v = v - alpha * func_grad(v[0],v[1])
values[i,:] = v

#plotting
plt.contour(x,y,z,levels=lev)
plt.plot(values[:,0],values[:,1],’r-’)
plt.plot(values[:,0],values[:,1],’bo’)
grad_norm = LA.norm(func_grad(v[0],v[1]))
title = "alpha %0.2f | final grad %0.3f" % (alpha,grad_norm)
plt.title(title)
file = "gd-%2.0f.pdf" % (alpha*100)
plt.savefig(file, bbox_inches=’tight’)
plt.clf()
plt.cla()

6.4 Fitting a Model to Data
For data analysis, the most common use of gradient descent is to fit a model to data. In this setting we
have a data set P = {p1, p2, . . . , pn} and a family of models M so each possible model Mα is defined by a
d-dimensional vector α = {α1, α2, . . . , αd} for p parameters.

Next we define a loss function L(P,Mα) which measures the difference between what the model predicts
and what the data values are. To choose which parameters generate the best model, we let f(α) : Rd → R
be our function of interest, defined f(α) = L(P,Mα). Then we can run gradient descent to find our model
Mα∗ . For instance we can set

f(α) = L(P,Mα) = SSE(P,Mα) =
∑

p∈P
(py −Mα(px))2. (6.1)

This is used for examples including maximum likelihood (or maximum log-likelihood) estimators from
Bayesian inference. This includes finding a single point estimator with Gaussian (where we had a closed-
form solution), but also many other variants (often where there is no known closed-form solution). It also
includes least squares regression and its many variants; we will see this in much more detail next. And will
include other topics (including clustering, PCA, classification) we will see later in class.

6.4.1 Least Mean Squares Updates for Linear Regression
Now we will work through how to use gradient descent for simple quadratic regression. It should be
straightforward to generalize to linear regression, multiple-explanatory variable linear regression, or gen-
eral polynomial regression from here. This will specify the function f(α) in equation (6.1) to where
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d = 3, α = (α0, α1, α2), for each p ∈ P we have p = (px, py) ∈ R2, but we consider a vector
q = (q0 = p0

x, q1 = p1
x, q2 = p2

x) as the set of explanatory variables. Finally,

Mα(px) = α0 + α1px + α2p
2
x = α0q0 + α1q1 + α2q2.

To specify the gradient descent step:

α := α− γ∇f(α)

we need to define∇f(α).
We will first show this for the case where n = 1, that is when there is a single data point p = (px, py) =

(x1, y1). It should now be easy to verify that the cost function f1(α) = (α0 +α1x1 +α2x
2
1−y1)2 is convex.

Next, derive

d

dαj
f(α) =

d

dαj
(Mα(x1)− y1)2

= 2(Mα(x1)− y1)
d

dαj
(Mα(x1)− y1)

= 2(Mα(x1)− y1)
d

dαj
(

2∑

j=0

αjx
j
1 − y1)

= 2(Mα(x1)− y1)xj1

Thus, we define

∇f(α) =

(
d

dα0
f(α),

d

dα1
f(α),

d

dα2
f(α)

)

= 2
(
(Mα(x1)− y1), (Mα(x1)− y1)x1, (Mα(x1)− y1)x2

1

)

Applying α := α − γ∇f(α) according to this specification is known as the LMS (least mean squares)
update rule or the Widrow-Huff learning rule. Quite intuitively, the magnitude the update is proportional to
the residual norm (Mα(x1) − y1). So if we have a lot of error in our guess of α, then we take a large step;
if we do not have a lot of error, we take a small step.

To generalize this to multiple data points (n > 1), there are two standard ways. Both of these take strong
advantage of the cost function f(α) being decomposable. That is, we can write

f(α) =

n∑

i=1

fi(α),

where each fi depends only on the ith data point pi ∈ P . In particular, where pi = (xi, yi), then

fi(α) = (Mα(xi)− yi)2 = (α0 + α1xi + α2x
2
i − yi)2.

First notice that since f is the sum of fis, where each is convex, then f must also be convex; in fact the
sum of these usually becomes strongly convex. Also two approaches towards gradient descent will take
advantage of this decomposition in slightly different ways. This decomposable property holds for most loss
functions for fitting a model to data.
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Batch gradient descent. The first technique, called batch gradient descent, simply extends the definition
of ∇f(α) to the case with multiple data points. Since f is decomposable, then we use the linearity of the
derivative to define

d

dαj
f(α) =

n∑

i=1

2(Mα(xi)− yi)xji

and thus

∇f(α) =

n∑

i=1

(
2(Mα(xi)− yi), 2(Mα(xi)− yi)xi, 2(Mα(xi)− yi)x2

i

)
.

That is, the step is now just the sum of the terms from each data point. Since f is convex, then we can apply
all of the nice convergence results discussed about (strongly) convex f before. However, computing∇f(α)
each step takes O(n) time, which can be slow.

Stochastic gradient descent. The second technique is called incremental gradient descent. It avoids
computing the full gradient each step, and only computes it for fi for a single data point pi ∈ P ; see
algorithm 6.4.1.

Algorithm 6.4.1 Incremental Gradient Descent(f, xstart)

initialize x(0) = xstart ∈ Rd; i = 1.
repeat
x(k+1) := x(k) − γk∇fi(x(k))
i := (i+ 1) mod n

until (‖∇f(x(k))‖ ≤ τ ) (or perhaps average of a few steps)

return x(k)

A more common variant of this is called stochastic gradient descent. Instead of choosing the data points
in order, it selects a data point pi at random each iteration (the term “stochastic” refers to this randomness).

These algorithms are often much faster than the batch version since each iteration now takes O(1) time.
However, it does not automatically inherent all of the nice convergence results from what is known about
(strongly) convex functions. Yet, since in most settings we are interested in, there is an abundance of data
points from the same model. This implies they should have a roughly similar effect. In practice when one
is far from the optimal model, these steps converge about as well as the batch version (but much much
faster). When one is close to the optimal model, then the incremental / stochastic variants may not exactly
converge. However, if one is willing to reach a point that is not too optimal, there are some randomized
(PAC-style) guarantees possible for the stochastic variant. And in fact, for very large data sets (n is very
big) they typically converge before the algorithm even uses all (or even most) of the data points.
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7 Principal Component Analysis

This topic will build a series of techniques to deal with high-dimensional data. Unlike regression problems,
our goal is not to predict a value (the y-coordinate), it is to understand the “shape” of the data, for instance a
low-dimensional representation that captures most of meaning of the high-dimensional data. This is some-
times referred to as unsupervised learning (as opposed to regression and classification, where the data has
labels, known as supervised learning). Like most unsupervised settings, it can be a lot of fun, but its easy to
get yourself into trouble if you are not careful.

We will cover many interconnected tools, including the singular value decomposition (SVD), eigenvectors
and eigenvalues, the power method, principal component analysis, and multidimensional scaling.

7.1 Data Matrices
We will start with data in a matrix A ∈ Rn×d, and will call upon linear algebra to rescue us. It is useful to
think of each row ai of A as a data point in Rd, so there are n data points. Each dimension j ∈ 1, 2, . . . , d
corresponds with an attribute of the data points.

Example: Data Matrices

There are many situations where data matrices arise.

• Consider a set of n weather stations reporting temperature over d points in time. Then each
row ai corresponds to a single weather station, and each coordinate Ai,j of that row is the
temperature at station i at time j.

• In movie ratings, we may consider n users who have rated each of dmovies on a score of 1−5.
Then each row ai represents a user, and the jth entry of that user is the score given to the j
movie.

• Consider the price of a stock measured over time (say the closing price each day). Many
time-series models consider some number of days (d days, for instance 25 days) to capture the
pattern of the stock at any given time. So for a given closing day, we consider the d previous
days. If we have data on the stock for 4 years (about 1000 days the stock market is open), then
we can create a d-dimensional data points (the previous d = 25 days) for each day (except the
first 25 or so). The data matrix is then comprised of n data points ai, where each corresponds
to the closing day, and the previous d days. The jth entry is the value on (j − 1) days before
the closing day i.

• Finally consider a series of pictures of a shape (say the Utah teapot). The camera position is
fixed as is the background, but we vary two things: the rotation of the teapot, and the amount
of light. Here each pictures is a set of say d pixels (say 10,000 if it is 100× 100), and there are
n pictures. Each picture is a row of length d, and each pixel corresponds to a column of the
matrix. Similar, but more complicated scenarios frequently occur with pictures of a persons
face, or 3d-imaging of an organ.

In each of these scenarios, there are many (n) data points, each with d attributes. The following will be
very important:
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• all coordinates have the same units!

If this “same units” property does not hold, then when we measure a distance between data points in Rd,
usually using the L2-norm, then the distance is nonsensical.

The next goal is to uncover a pattern, or a model M . In this case, the model will be a low-dimensional
subspace F . It will represent a k-dimensional space, where k << d. For instance in the example with
images, there are only two parameters which are changing (rotation, and lighting), so despite having d =
10,000 dimensions of data, 2 should be enough to represent everything.

7.1.1 Projections
Different than in linear regression this family of techniques will measure error as a projection from ai ∈ Rd
to the closest point πF (ai) on F . To define this we will use linear algebra.

First recall, that given a unit vector u ∈ Rd and any data point p ∈ Rd, then the dot product

〈u, p〉

is the norm of p projected onto the line through u. If we multiply this scalar by u then

πu(p) = 〈u, p〉u,

and it results in the point on the line through u that is closest to data point p. This is a projection of p onto u.
To understand this for a subspace F , we will need to define a basis. For now we will assume that F

contains the origin (0, 0, 0, . . . , 0) (as did the line through u). Then if F is k-dimensional, then this means
there is a k-dimensional basis UF = {u1, u2, . . . , uk} so that

• For each ui ∈ UF we have ‖ui‖ = 1, that is ui is a unit vector.

• For each pair ui, uj ∈ UF we have 〈ui, uj〉 = 0; the pairs are orthogonal.

• For any point x ∈ F we can write x =
∑k

i=1 αiui; in particular αi = 〈x, ui〉.

Given such a basis, then the projection on to F of a point p ∈ Rd is simply

πF (p) =

k∑

i=1

〈ui, p〉ui.

Thus if p happens to be exactly in F , then this recovers p exactly.
The other powerful part of the basis UF is the it defines a new coordinate system. Instead of using the d

original coordinates, we can use new coordinates (α1(p), α2(p), . . . , αk(p)) where αi(p) = 〈ui, p〉. To be
clear πF (p) is still in Rd, but there is a k-dimensional representation if we restrict to F .

WhenF is d-dimensional, this operation can still be interesting. The basis we chooseUF = {u1, u2, . . . , ud}
could be the same as the original coordinate axis, that is we could have ui = ei = (0, 0, . . . , 0, 1, 0, . . . , 0)
where only the ith coordinate is 1. But if it is another basis, then this acts as a rotation (with possibility of
also a mirror flip). The first coordinate is rotated to be along u1; the second along u2; and so on. In πF (p),
the point p does not change, just its representation.

An Introduction to Data Analysis through a Geometric Lens copyright: Jeff M. Phillips



7.1.2 SSE Goal
As usual our goal will be to minimize the sum of squared errors. In this case we define this as

SSE(A,F ) =
∑

ai∈A
‖ai − πF (ai)‖2,

and our desired k-dimensional subspace F is

F ∗ = arg min
F

SSE(A,F )

As compared to linear regression, this is much less a “proxy goal” where the true goal was prediction. Now
we have no labels (the yi values), so we simply try to fit a model through all of the data.

How do we solve for this?

• Linear regression does not work, its cost function is different.

• It is not obvious how to use gradient descent. The restriction that each ui ∈ UF is a unit vector puts
in a constraint, in fact a non-convex one. There are ways to deal with this, but we have not discussed
these yet.

• ... linear algebra will come back to the rescue, now in the form of the SVD.

7.2 Singular Value Decomposition
A really powerful and useful linear algebra operation is called the singular value decomposition. It extracts
an enormous amount of information about a matrix A. This section will define it and discuss many of its
uses. Then we will describe one algorithm how to construct it. But in general, one simply calls the procedure
in your favorite programming language and it calls the same highly-optimized back-end from the Fortran
LAPACK library.

from scipy import linalg as LA
U, s, Vt = LA.svd(A)

The SVD takes in a matrix A ∈ Rn×d and outputs three matrices U ∈ Rn×n, S ∈ Rn×d and V ∈ Rd×d,
so that A = USV T .

[U, S, V ] = svd(A)

=A U S
VT

The structure that lurks beneath. The matrix S only has non-zero elements along its diagonal. So
Si,j = 0 if i 6= j. The remaining values σ1 = S1,1, σ2 = S2,2, . . ., σr = Sr,r are known as the singular
values. They have the property that

σ1 ≥ σ2 ≥ . . . σr ≥ 0

An Introduction to Data Analysis through a Geometric Lens copyright: Jeff M. Phillips



where r ≤ min{n, d} is the rank of the matrix A. So the number of non-zero singular values reports the
rank (this is a numerical way of computing the rank or a matrix).

The matrices U and V are orthogonal. Thus, their columns are all unit vectors and orthogonal to each
other (within each matrix). The columns of U , written u1, u2, . . . , ud, are called the left singular vectors;
and the columns of V , written v1, v2, . . . , vn, are called the right singular vectors.

This means for any vector x ∈ Rd, the columns of V (the right singular vectors) provide a basis. That is,
we can write x =

∑d
i=1 αivi for αi = 〈x, vi〉. Similarly for any vector y ∈ Rn, the columns of U (the left

singular vectors) provide a basis. This also implies that ‖x‖ = ‖V Tx‖ and ‖y‖ = ‖yU‖.

=A U

S VT

one data point

left singular vector

right singular vector

singular value
importance of singular vectors
decreasing rank order: �j � �j+1

important directions (vj by �j)
orthogonal: creates basis

maps contribution of data points
to singular values

v1

v2

x

kAxk

Tracing the path of a vector. To illustrate what this decomposition demonstrates, a useful exercise is to
trace what happens to a vector x ∈ Rd as it is left-multiplied by A, that is Ax = USV Tx.

First V Tx produces a new vector ξ ∈ Rd. It essentially changes no information, just changes the basis to
that described by the right singular values. For instance the new i coordinate ξi = 〈vi, x〉.

Next η ∈ Rn is the result of SV Tx = Sξ. It scales ξ by the singular values of S. Note that if d < n (the
case we will focus on), then the last n − d coordinates of η are 0. In fact, for j > r (where r = rank(A))
then ηj = 0. For j ≤ r, then the vector η is stretched longer in the first coordinates since these have larger
values.

The final result is a vector y ∈ Rn, the result of Ax = USV Tx = Uη. This again just changes the basis
of η so that it aligns with the left singular vectors. In the setting n > d, the last n − d left singular vectors
are meaningless since the corresponding entries in η are 0.

Working backwards ... this final U matrix can be thought of mapping the effect of η onto each of the data
points ofA. The η vector, in turn, can be thought of as scaling by the content of the data matrixA (the U and
V T matrices contain no scaling information). And the ξ vector arises via the special rotation matrix V T that
puts the starting point x into the right basis to do the scaling (from the original d-dimensional coordinates
to one that suits the data better).
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Example: Tracing through the SVD

Consider a matrix

A =




4 3
2 2
−1 −3
−5 −2


 ,

and its SVD [U, S, V ] = svd(A):

U =


−0.6122 0.0523 0.0642 0.7864
−0.3415 0.2026 0.8489 −0.3487
0.3130 −0.8070 0.4264 0.2625
0.6408 0.5522 0.3057 0.4371

 , S =


8.1655 0

0 2.3074
0 0
0 0

 , V =

(
−0.8142 −.5805
−0.5805 0.8142

)
.

Now consider a vector x = (0.243, 0.97) (scaled very slightly so it is a unit vector, ‖x‖ = 1).
Multiplying by V T rotates (and flips) x to ξ = V Tx; still ‖ξ‖ = 1

x1

x2

v1

v2

x

v1

v2

⇠

Next multiplying by S scales ξ to η = Sξ. Notice there are an imaginary third and fourth coordinates
now; they are both coming out of the page! Don’t worry, they won’t poke you since their magnitude
is 0.

v1

v2⌘

Finally, y = Uη = Ax is again another rotation of η in this four dimensional space.
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import scipy as sp
import numpy as np
from scipy import linalg as LA

A = np.array([[4.0,3.0], [2.0,2.0], [-1.0,-3.0], [-5.0,-2.0]])

U, s, Vt = LA.svd(A, full_matrices=False)

print U
#[[-0.61215255 -0.05228813]
# [-0.34162337 -0.2025832 ]
# [ 0.31300005 0.80704816]
# [ 0.64077586 -0.55217683]]
print s
#[ 8.16552039 2.30743942]
print Vt
#[[-0.81424526 -0.58052102]
# [ 0.58052102 -0.81424526]]

x = np.array([0.243,0.97])
x = x/LA.norm(x)

xi = Vt.dot(x)
print xi
#[-0.7609864 -0.64876784]

S = LA.diagsvd(s,2,2)
eta = S.dot(xi)
print eta
#[-6.21384993 -1.49699248]

y = U.dot(eta)
print y
#[ 3.88209899 2.42606187 -3.1530804 -3.15508046]

print A.dot(x)
#[ 3.88209899 2.42606187 -3.1530804 -3.15508046]

7.2.1 Best Rank-k Approximation
So how does this help solve the initial problem of finding F ∗, which minimized the SSE? The singular
values hold the key.

It turns out that there is a unique singular value decomposition, up to ties in the singular values. This
means, there is exactly one (up to singular value ties) set of right singular values which rotate into a basis
so that ‖Ax‖ = ‖SV Tx‖ for all x ∈ Rd (recall that U is orthogonal, so it does not change the norm,
‖Uη‖ = ‖η‖).

Next we realize that the singular values come in sorted order σ1 ≥ σ2 ≥ . . . ≥ σr. In fact, they are
defined so that we choose v1 so it maximizes ‖Av1‖, then we find the next singular vector v2 which is
orthogonal to v1 and maximizes ‖Av2‖, and so on. Then σi = ‖Avi‖.

If we define F with the basis UF = {v1, v2, . . . , vk}, then

‖x− πF (x)‖2 =

∥∥∥∥∥
d∑

i=1

vi〈x, vi〉 −
k∑

i=1

vi〈x, vi〉
∥∥∥∥∥

2

=
d∑

i=k+1

〈x, vi〉2.
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so the projection error is that part of x in the last (d− k) right singular vectors.
But we are not trying to directly predict new data here (like in regression). Rather, we are trying to

approximate the data we have. We want to minimize
∑

i ‖ai − πF (ai)‖2. But for any unit vector u, we
recall now that

‖Au‖2 =

n∑

i=1

〈ai, u〉.

Thus the projection error can be measured with a set of orthonormal vectors w1, w2, . . . , wd−k which are
each orthogonal to F , as

∑n−k
j=1 ‖Awj‖2. When defining F as the first k right singular values, then these

orthogonal vectors are the remaining (n− k) right singular vectors, so the projection error is

n∑

i=1

‖ai − πF (ai)‖2 =

d∑

j=k+1

‖Avj‖2 =

d∑

j=k+1

σ2
j .

And thus by how the right singular vectors are defined, this expression is minimized when F is defined as
the span of the first k singular values.

Best rank-k approximation. A similar goal is to find the best rank-k approximation ofA. That is a matrix
Ak ∈ Rn×d so that rank(Ak) = k and it minimizes both

‖A−Ak‖2 and ‖A−Ak‖F .
Note that ‖A−Ak‖2 = σk+1 and ‖A−Ak‖2F =

∑d
j=k+1 σ

2
j .

Remarkably, this Ak matrix also comes from the SVD. If we set Sk as the matrix S in the decomposition
so that all but the first k singular values are 0, then it has rank k. Hence Ak = USkV

T also has rank k and
is our solution. But we can notice that when we set most of Sk to 0, then the last (d− k) columns of V are
meaningless since they are only multiplied by 0s in USkV T , so we can also set those to all 0s, or remove
them entirely (along with the last (d− k) columns of Sk). Similar we can make 0 or remove the last (n− k)
columns of U . These matrices are referred to as Vk and Uk respectively, and also Ak = UkSkV

T
k .

=A U

S VTkk

kk

7.3 Eigenvalues and Eigenvectors
A related matrix decomposition to SVD is the eigendecomposition. This is only defined for a square matrix
B ∈ Rn×n.

An eigenvector of B is a vector v such that there is some scalar λ that

Bv = λv.

That is, multiplying B by v results in a scaled version of v. The associated value λ is called the eigenvalue.
As a convention, we typically normalize v so ‖v‖ = 1.

In general, a square matrix B ∈ Rn×n may have up to n eigenvectors (a matrix V ∈ Rn×n) and values (a
vector l ∈ Rn). Some of the eigenvalues may be complex numbers (even when all of its entries are real!).
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from scipy import linalg as LA
l, V = LA.eig(B)

For this reason, we will focus on positive semidefinite matrices. A positive definite matrix B ∈ Rn×n
is a symmetric matrix with all positive eigenvalues. Another characterization is for every vector x ∈ Rn
then xTBx is positive. A positive semidefinite matrix B ∈ Rn×n may have some eigenvalues at 0 and are
otherwise positive; equivalently for any vector x ∈ Rn, then xTBx may be zero or positive.

How do we get positive semi-definite matrices? Lets start with a data matrix A ∈ Rn×d. Then we can
construct two positive semidefinite matrices

BR = ATA and BL = AAT .

Matrix BR is d × d and BL is n × n. If the rank of A is d, then BR is positive definite. If the rank of A is
n, then BL is positive definite.

Eigenvectors and eigenvalues relation to SVD. Next consider the SVD ofA so that [U, S, V ] = svd(A).
Then we can write

BRV = ATAV = (V SUT )(USV T )V = V S2.

Note that the last step follows because for orthogonal matrices U and V , then UTU = I and V TV = I ,
where I is the identity matrix, which has no effect. The matrix S is a diagonal square1 matrix S =
diag(σ1, σ2, . . . , σd). Then S2 = SS (the product of S with S) is again diagonal with entries S2 =
diag(σ2

1, σ
2
2, . . . , σ

2
d).

Now consider a single column vi of V (which is the ith right singular vector of A). Then extracting this
column’s role in the linear system BRV = V S2 we obtain

BRvi = viσ
2
i .

This means that ith right singular vector of A is an eigenvector (in fact the ith eigenvector) of BR = ATA.
Moreover, the ith eigenvalue λi of BR is the ith singular value of A squared: λi = σ2

i .
Similarly we can derive

BLU = AATU = (USV T )(V SUT )U = US2,

and hence the left singular vectors of A are the eigenvectors of BL = AAT and the eigenvalues of BL are
the squared singular values of A.

Eigendecomposition. In general, the eigenvectors provide a basis for a matrix B ∈ Rn×n in the same
way that the right V or left singular vectors U provide a basis for matrix A ∈ Rn×d. In fact, it is again a
very special basis, and is unique up to the multiplicity of eigenvalues. This implies that all eigenvectors are
orthogonal to each other.

Let V = [v1, v2, . . . , vn] be the eigenvectors of the matrix B ∈ Rn×n, as columns in the matrix V . Also
let L = diag(λ1, λ2, . . . , λd) be the eigenvalues of B stored on the diagonal of matrix L. Then we can
decompose B as

B = V LV −1.

1Technically, S ∈ Rn×d. To make this simple argument work, lets first assume w.l.o.g. (without loss of generality) that d ≤ n.
Then the bottom n− d rows of S are all zeros, which mean the right n− d rows of U do not matter. So we can ignore both these
n − d rows and columns. Then S is square. This makes U no longer orthogonal, so UTU is then a projection, not identity; but it
turns out this is a project to the span of A, so the argument still works.
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Note that the inverse of L is L−1 = diag(1/λ1, 1/λ2, . . . , 1/λn). Hence we can write

B−1 = V L−1V −1.

When B is positive definite, it has n positive eigenvectors and eigenvalues; hence V is orthogonal, so
V −1 = V T . Thus in this situation, given the eigendecomposition, we now have a way to compute the
inverse

B−1 = V L−1V T ,

which was required in our almost closed-form solution for linear regression. Now we just need to compute
the eigendecomposition, which we will discuss next.

7.4 The Power Method
The power method refers to what is probably the simplest algorithm to compute the first eigenvector and
value of a matrix. By factoring out the effect of the first eigenvector, we can then recursively repeat the
process on the remainder until we have found all eigenvectors and values. Moreover, this implies we can
also reconstruct the singular value decomposition as well.

We will consider B ∈ Rn×n, a positive semidefinite matrix: B = ATA.

Algorithm 7.4.1 PowerMethod(B, q)

initialize u(0) as a random unit vector.
for i = 1 to q do
u(i) := Bu(i−1)

return v := u(q)/‖u(q)‖

We can unroll the for loop to reveal another interpretation. We can directly set v(q) = Bqv(0), so all itera-
tions are incorporated into one matrix-vector multiplication. Recall that Bq = B ·B ·B · . . . ·B, for q times.
However, these q matrix multiplications are much more expensive then q matrix-vector multiplications.

Alternatively we are provided only the matrixA (whereB = ATA) then we can run the algorithm without
explicitly constructing B (since for instance if d > n and A ∈ Rn×d, then the size of B (d2) may be much
larger than A (nd)). Then we simply replace the inside of the for-loop with

u(i) := AT (Au(i−1))

where we first multiply ũ = Au(i−1) and then complete u(i) = AT ũ.

Recovering all eigenvalues. The output of PowerMethod(B = ATA, q) is a single unit vector v, which
we will argue is arbitrarily close to the first eigenvector v1. Clearly we can recover the first eigenvalue as
λ1 = ‖Bv1‖. Since we know the eigenvectors form a basis forB, they are orthogonal. Hence, after we have
constructed the first eigenvector v1, we can factor it out from B as follows:

A1 := A−Av1v
T
1

B1 := AT1 A1

Then we run PowerMethod(B1 = AT1 A1, q) to recover v2, and λ2; factor them out of B1 to obtain B2, and
iterate.
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Why does the power method work? To understand why the power method works, assume we know the
eigenvectors v1, v2, . . . , vn and eigenvalues λ1, λ2, . . . , λn of B ∈ Rn×n.

Since the eigenvectors form a basis for B, and assuming it is full rank, then also for all of Rn (if not, then
it does not have n eigenvalues, and we can fill out the rest of the basis of Rn arbitrarily). Hence, for any
vector, including the initialization random vector u(0) can be written as

u(0) =
n∑

j=1

αjvj .

Recall that αj = 〈u(0), vj〉, and since it is random, it is possible to claim that with probability at least 1/2
that for any αj we have that |αj | ≥ 1

2

√
n2. We will now assume that this holds for j = 1, so α1 > 1/2

√
n.

Next since we can interpret that algorithm as v = Bqu(0), then lets analyze Bq. If B has jth eigenvector
vj and eigenvalue λj , that is, Bvj = λjvj , then Bq has jth eigenvalue λqj since

Bqvj = B ·B · . . . ·Bvj = Bq−1(vjλ) = Bq−2(vjλ)λ = vjλ
q.

This holds for each eigenvalue of Bq. Hence we can rewrite output by summing over the terms in the
eigenbasis as

v =

∑n
j=1 αjλ

q
jvj√∑n

j=1(αjλ
q
j)

2
.

Finally, we would like to show our output v is close to the first eigenvector v1. We can measure closeness
with the dot product (actually we will need to use its absolute value since we might find something close to
−v1).

|〈Bqu(0), v1〉| =
α1λ

q
1√∑n

j=1(αjλ
q
j)

2

≥ α1λ
q
1√

α2
1λ

2q
1 + nλ2t

2

≥ α1λ
q
1

α1λ
q
1 + λq2

√
n

= 1− λq2
√
n

α1λ
q
1 + λq2

√
n

≥ 1− 2
√
n

(
λ2

λ1

)q
.

The first inequality holds because λ1 ≥ λ2 ≥ λj for all j > 2. The third inequality (going to third line)
holds by dropping the λq2

√
n term in the denominator, and since α1 > 1/2

√
n.

Thus if there is “gap” between the first two eigenvalues (λ1/λ2 is large), then this algorithm converges
quickly to where |〈v, v1〉| = 1.

7.5 Principal Component Analysis
Recall that the original goal of this topic was to find the k-dimensional subspace F to minimize

‖A− πF (A)‖2F =
∑

ai∈A
‖ai − πF (ai)‖2.

2Since u(0) is a unit vector, its norm is 1, and because {v1, . . . , vn} is a basis, then 1 = ‖u(0)‖2 =
∑n

j=1 α
2
j . Since it is

random, then E[α2
j ] = 1/n for each j. Applying a concentration of measure (almost a Markov Inequality, but need to be more

careful), we can argue that with probability 1/2 any α2
j > (1/4) · (1/n), and hence αj > (1/2) · (1/

√
n).
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We have not actually solved this yet. The top k right singular values Vk of A only provided this bound
assuming that F contains the origin: (0, 0, . . . , 0). However, this might not be the case!

Principal Component Analysis (PCA) is an extension of the SVD when we do not restrict that the subspace
Vk must go through the origin. It turns out, like with simple linear regression, that the optimal F must go
through the mean of all of the data. So we can still use the SVD, after a simple preprocessing step called
centering to shift the data matrix so its mean is exactly at the origin.

Specifically, centering is adjusting the original input data matrix A ∈ Rn×d so that each column (each
dimension) has an average value of 0. This is easier than it seems. Define āj = 1

n

∑n
i=1Ai,j (the average

of each column j). Then set each Ãi,j = Ai,j − āj to represent the entry in the ith row and jth column of
centered matrix Ã.

There is a centering matrixCn = In− 1
n11T where In is the n×n identity matrix, 1 is the all-ones column

vector (of length n) and thus 11T is the all-ones n× n matrix. Then we can also just write Ã = CnA.
Now to perform PCA on a data set A, we compute [U, S, V ] = svd(CnA) = svd(Ã).
Then the resulting singular values diag(S) = {σ1, σ2, . . . , σr} are known as the principal values, and the

top k right singular vectors Vk = [v1 v2 . . . vk] are known as the top-k principal directions.
This often gives a better fitting to the data than just SVD. The SVD finds the best rank-k approximation

ofA, which is the best k-dimensional subspace (up to Frobenius and spectral norms) which passes through
the origin. If all of the data is far from the origin, this can essentially “waste” a dimension to pass through
the origin. However, we also need to store the shift from the origin, a vector c̃ = (ã1, ã2, . . . , ãd) ∈ Rd.

7.6 Multidimensional Scaling
Dimensionality reduction is an abstract problem with input of a high-dimensional data set P ⊂ Rd and a
goal of finding a corresponding lower dimensional data set Q ⊂ Rk, where k << d, and properties of P
are preserved in Q. Both low-rank approximations through direct SVD and through PCA are examples of
this: Q = πVk(P ). However, these techniques require an explicit representation of P to start with. In some
cases, we are only presented P more abstractly. There two common situations:

• We are provided a set of n objects X , and a bivariate function d : X ×X → R that returns a distance
between them. For instance, we can put two cities into an airline website, and it may return a dollar
amount for the cheapest flight between those two cities. This dollar amount is our “distance.”

• We are simply provided a matrix D ∈ Rn×n, where each entry Di,j is the distance between the ith
and jth point. In the first scenario, we can calculate such a matrix D.

Multi-Dimensional Scaling (MDS) has the goal of taking such a distance matrixD for n points and giving
low-dimensional (typically) Euclidean coordinates to these points so that the embedded points have similar
spatial relations to that described in D. If we had some original data set A which resulted in D, we could
just apply PCA to find the embedding. It is important to note, in the setting of MDS we are typically just
given D, and not the original data A. However, as we will show next, we can derive a matrix that will act
like AAT using only D.

A similarity matrix M is an n × n matrix where entry Mi,j is the similarity between the ith and the jth
data point. The similarity often associated with Euclidean distance ‖ai − aj‖ is the standard inner (or dot
product) 〈ai, aj〉. We can write

‖ai − aj‖2 = ‖ai‖2 + ‖aj‖2 − 2〈ai, aj〉,

and hence
〈ai, aj〉 =

1

2

(
‖ai‖2 + ‖aj‖2 − ‖ai − aj‖2

)
. (7.1)
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Next we observe that for the n× n matrix AAT the entry [AAT ]i,j = 〈ai, aj〉. So it seems hopeful we can
derive AAT from D using equation (7.1). That is we can set ‖ai − aj‖2 = D2

i,j . However, we need also
need values for ‖ai‖2 and ‖aj‖2.

Since the embedding has an arbitrary shift to it (if we add a shift vector s to all embedding points,
then no distances change), then we can arbitrarily choose a1 to be at the origin. Then ‖a1‖2 = 0 and
‖aj‖2 = ‖a1 − aj‖2 = D2

1,j . Using this assumption and equation (7.1), we can then derive the similarity
matrixAAT . Then we can run the eigen-decomposition onAAT and use the coordinates of each point along
the first k eigenvectors to get an embedding. This is known as classical MDS.

It is often used for k as 2 or 3 so the data can be easily visualized.
There are several other forms that try to preserve the distance more directly, where as this approach

is essentially just minimizing the squared residuals of the projection from some unknown original (high-
dimensional embedding). One can see that we recover the distances with no error if we use all n eigenvectors
– if they exist. However, as mentioned, there may be less than n eigenvectors, or they may be associated
with complex eigenvalues. So if our goal is an embedding into k = 3 or k = 10, there is no guarantee that
this will work, or even what guarantees this will have. But MDS is used a lot nonetheless.
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8 Clustering

This topic will focus on automatically grouping data points into subsets of similar points. There are numer-
ous ways to define this problem, and most of them are quite messy. And many techniques for clustering
actually lack a mathematical formulation. We will focus on what is probably the cleanest and most used
formulation: k-means clustering. But, for background, we will begin with a mathematical detour in Voronoi
diagrams.

8.1 Voronoi Diagrams
Consider a set S = {s1, s2, . . . , sk} ⊂ Rd of sites. We would like to understand how these points carve up
the space Rd.

We can think of this more formally as the post office problem. Let these sites define the locations of a
post office. For all points in Rd (e.g., a point on the map for points in R2), we would like to assign it to the
closest post office. For a fixed point, we can just check the distance to each post office:

φS(x) = arg min
si∈S
‖x− si‖.

However, this may be slow (naively take O(k) time for each point x), and does not provide a general
representation or understanding for all points. The “correct” solution to this problem is the Voronoi diagram.

The Voronoi diagram decomposes Rd into k regions (a Voronoi cell), one for each site. The region for
site si is defined.

Ri = {x ∈ Rd | φS(x) = si}
If we have these regions nicely defined, this solves the post office problem. For any point x, we just need
to determine which region it lies in (for instance in R2, once we have defined these regions, through an
extension of binary search, we can locate the region containing any x ∈ R2 in only O(log k) time). But
what do these regions look like, and what properties do they have.

Voronoi edges and vertices. We will start our discussion in R2. Further, we will assume that the sites S
are in general position: in this setting, it means that no set of three points lie on a common line, and that no
set of four points lie on a common circle.

The boundary between two regions Ri and Rj , called a Voronoi edge, is a line or line segment. This edge
ei,j is defined

ei,j = {x ∈ R2 | ‖x− si‖ = ‖x− sj‖ ≤ ‖x− s`‖ for all ` 6= i, j}
as the set of all points equal distance to si and sj , and not closer to any other point s`.

Why is this set a line segment? If we only have two points in S, then it is the bisector between them. Draw
a circle centered at any point x on this bisector, and if it intersects one of si or sj , it will also intersect the
other. This is true since we can decompose the squared distance from x to si along orthogonal components:
along the edge, and perpendicular to the edge from si to πei,j (si).

Similarly, a Voronoi vertex vi,j,` is a point where three sites si, sj , and s` are all equidistance, and no
other points are closer:

vi,j,k = {x ∈ R2 | ‖x− si‖ = ‖x− sj‖ = ‖x = s`‖ ≤ ‖x− sk‖ for all k 6= i, j, `}.
This vertex is the intersection (and end point) of three Voronoi edges ei,i, ei,`, and ej,`. Think of sliding a
point x along an edge ei,j and maintaining the circle centered at x and touching si and sj . When this circle
grows to where it also touches s`, then ei,j stops.
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Example: Voronoi Diagram

See the following example with k = 6 sites in R2. Notice the following properties: edges may be
unbounded, and the same with regions. The circle centered at v1,2,3 passes through s1, s2, and s3.
Also, Voronoi cell R3 has 5 = k − 1 vertices and edges.

s1

s2

s3

s4

s5

s6

e1,2

e1,3

e2,3

v1,2,3

Size complexity. So how complicated can these Voronoi diagrams get? A single Voronoi cell can have
k−1 vertices and edges. So can the entire complex be of sizeO(k2) (each of k regions requiring complexity
O(k))? No. The Voronoi vertices and edges describe a planar graph. Some cool results from graph theory
says that planar graphs have asymptotically the same number of edges, faces, and vertices. Euler’s Formula
for a planar graph with n vertices, m edges, and k faces is that k + n −m = 2. And Kuratowski’s criteria
says for n ≥ 3, then m ≤ 3n − 6. Hence, k ≤ 2n − 4 for n ≥ 3. The duality construction to Delauney
triangulations (discussed below) will complete the argument. Since there are k faces (the k Voronoi cells,
one for each site), then there are also O(k) edges and O(k) vertices. In particular, there will be precisely
2n− 5 vertices and 3k − 6 edges.

However, this does not hold in R3. In particular, for R3 and R4, the complexity (number of cells, vertices,
edges, faces, etc) is O(k2). This means, there could be roughly as many edges as their are pairs of vertices!

But it can get much worse. In Rd (for general d) then the complexity is O(kdd/2e). This is a lot. Hence,
this structure is impractical to construct in high dimensions.

: The curse of dimensionality! ooooh

Moreover, since this structure is explicitly tied to the post office problem, and the nearest neighbor func-
tion φS , it indicates that (a) in R2 this function is nicely behaved, but (b) in high dimensions, it is quite
complicated.

8.1.1 Delaunay Triangulation
A fascinating aspect of the Voronoi diagram is that it can be converted into a very special graph where the
sites S are vertices, one called the Delaunay triangulation. This is the dual of the Voronoi diagram.

• Each face Ri of the Voronoi diagram maps to a vertex si in the Delaunay triangulation.
• Each vertex vi,j,` in the Voronoi diagram maps to a triangular face fi,j,` in the Delaunay triangulation.
• Each edge ei,j in the Voronoi diagram maps to an edge ēi,j in the Delaunay triangulation.
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Example: Delaunay Triangulation

See the following example with 6 sites in R2. Notice that every edge, face, and vertex in the Delau-
nay triangulation corresponds to a edge, vertex, and face in the Voronoi diagram. Interestingly, the
associated edges may not intersection; see e2,6 and ē2,6.

s1

s2

s3

s4

s5

s6

e1,2

e1,3

e2,3

v1,2,3

e2,6

ē2,6

Because of the duality between the Voronoi diagram and the Delaunay triangulation, their complexities
are the same. That means the Voronoi diagram is of size O(k) for k sites in R2, but more generally is of size
O(kdd/2e) in Rd.

The existence of of the Delaunay triangulation shows that there always exist a triangulation: A graph with
vertices of a given set of points S ⊂ R2 so that all edges are straightline segments between the vertices,
and each face is a triangle. In fact, there are many possible triangulations: one can always simply construct
some triangulation greedily, draw any possible edges that does not cross other edges until no more can be
drawn.

The Delaunay triangulation, however, is quite special. This is the triangulation that maximizes the small-
est angle over all triangles; for meshing applications in graphics and simulation, skinny triangles are very
hard to deal with, so this is very useful.

In circle property. Another cool way to define the Delaunay triangulation is through the in circle property.
For any three points, the smallest enclosing ball either has all three points on the boundary, or has two points
on the boundary and they are antipodal to each other. Any circle with two points antipodal on the boundary
si and sj , and contains no other points, then the edge ei,j is in the Delaunay triangulation. This is a subset
of the Delaunay triangulation called the Gabriel graph.

Any circle with three points on its boundary si, sj , and s`, and no points in its interior, then the face fi,j,`
is in the Delaunay triangulation, as well as its three edges ei,j , ei,` and ej,`. But does not imply those edges
satisfy the Gabriel property.

For instance, on a quick inspection, (in the example above) it may not be clear if edge e3,5 or e4,6 should
be in the Delaunay triangulation. Clearly it can not be both since they cross. But the ball with boundary
through s3, s4, and s6 would contain s5, so the face f3,4,6 cannot be in the Delaunay triangulation. On the
other hand the ball with boundary through s3, s6, and s5 does not contain s4 or any other points in S, so the
face f3,5,6 is in the Delaunay triangulation.
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8.1.2 Connection to Clustering
So what is the connection to clustering? Given a large set X ⊂ Rd of size n, we would like to find a set of k
sites S (post office locations) so that each point x ∈ X is near some post office. This is a proxy problem. So
given a set of sites S, determining for each x ∈ X which site is closest is exactly determined by the Voronoi
diagram.

8.2 k-Means Clustering
Probably the most famous clustering formulation is k-means. The term “k-means” refers to a problem
formulation, not an algorithm. There are many algorithms with aim of solving the k-means problem formu-
lation, exactly or approximately. We will mainly focus on the most common: Lloyd’s algorithm. Unfortu-
nately, it is common in the literature to see “the k-means algorithm,” this typically should be replaced with
Lloyd’s algorithm.
k-Means is in the family of assignment-based clustering. Each cluster is represented by a single point,

to which all other points in the cluster are “assigned.” The input is a data set X , and the output is a set of
centers S = {s1, s2, . . . , sk}. This implicitly defines a set of clusters where φS(x) = arg mins∈S ‖x − s‖
(the same as in the post office problem). Then the k-means clustering problem is to find the set S of k
clusters to minimize

cost(X,S) =
∑

x∈X
‖φS(x)− x‖2.

So we want every point assigned to the closest site, and want to minimize the sum of the squared distance
of all such assignments.

8.3 Lloyd’s Algorithm
When people think of the k-means problem, they usually think of the following algorithm. It is usually
attributed to Stuart P. Lloyd from a document in 1957, although it was not published until 1982.1

Algorithm 8.3.1 Lloyd’s Algorithm for k-Means Clustering
Choose k points S ⊂ X arbitrarily?
repeat

for all x ∈ X: assign x to Xi for si = φS(x) the closest site s ∈ S to x
for all si ∈ S: set si = 1

|Xi|
∑

x∈Xi
x the average of Xi = {x ∈ X | φS(x) = si}

until (the set S is unchanged)

Convergence. If the main loop has R rounds, then this takes roughly Rnk steps (and can be made closer
to Rn log k with faster nearest neighbor search in some cases). But how large is R; that is, how many
iterations do we need?

First, we can argue that the number of steps is finite. This is true since the cost function cost(X,S) will
always decrease. To see this, writing it as a sum over S.

cost(X,S) =
∑

x∈X
‖φS(x)− x‖2 =

∑

si∈S

∑

x∈Xi

‖si − x‖2.

1Apparently, the IBM 650 computer Lloyd was using in 1957 did not have enough computational power to run the (very simple)
experiments he had planned. This was replaced by the IBM 701, but it did not have quite the same “quantization” functionality as
the IBM 650, and the work was forgotten. Lloyd was also worried about some issues regarding the k-means problem not having a
unique minimum.
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Then in each step of the repeat-until loop, thus must decrease. The first step holds since it moves each
x ∈ X to a subset Xi with the corresponding center si closer to (or the same distance to) x than before.
So for each x the term ‖x − si‖ is reduced (or the same). The second step holds since for each inner sum∑

x∈Xi
‖si−x‖2, the single point si which minimizes this cost is precisely the average ofXi. So reassigning

si as described also decreases the cost (or keeps it the same).
Importantly, if the cost decreases each step, then it cannot have the same set of centers S on two different

steps, since that would imply the assignment sets {Xi} would also be the same. Thus, in order for this to
happen, the cost would need to decrease after the first occurrence, and then increase to obtain the second
occurrence, which is not possible.

Since, there are finite ways each set of points can be assigned to different clusters, then, the algorithm
terminates in a finite number of steps.

... but in practice usually we may run for R = 10, or maybe R = 20 steps. Or check if the change in cost
function is below some sufficiently small threshold.

On clusterability: When data is easily clusterable, most clustering algorithms work quickly and
well. When is not easily clusterable, then no algorithm will find good clusters.

Sometimes there is a good k-means clustering, but it is not found by Lloyd’s algorithm. Then we can
choose new centers again (with randomness), and try again.

Initialization. The initial paper by Lloyd advocates to choose the initial partition ofX into disjoint subsets
X1, X2, . . . , Xk arbitrarily. However, some choices will not be very good. For instance, if we randomly
place each x ∈ X into some xi, then (by the central limit theorem) we expect all si = 1

|Xi|
∑

x∈Xi
x to all

be close to the mean of the full data set 1
|X|
∑

x∈X x.
A bit safer way to initialize the data is to choose a set S ⊂ X at random. Since each si is chosen separately

(not as an average of data points), there is no centering phenomenon. However, even with this initialization,
we may run Lloyd’s algorithm to completion, and find a sub-optimal solution (a local minimum!). Thus,
it is usually safer to randomly re-initialize the algorithm several times (say 3-5 times) and rerun Lloyd’s
algorithm for each. the probability all random restarts results in a local minimum is more rare.

A more principled way to choose an initial set S is to use an algorithm like Gonzalez (for k steps, iter-
atively chose the point x ∈ X furthest from all sites chosen so far), or k-means++ (for k steps, iteratively
choose a point at random proportional to the squared distance to its nearest already chosen site). These
are beyond the scope of this class, but offer much stronger error guarantees of various forms. But, for
k-means++, it is still suggested to try random restarts.

Number of clusters So what is the right value of k? Like with PCA, there is no perfect answer towards
choosing how many dimensions the subspace should be. When k is not given to you, typically, you would
run with many different values of k. Then create a plot of cost(S,X) as a function of k. This cost will
always decrease with larger k; but of course k = n is of no use. At some point, the cost will not decrease
much between values (this implies that probably two centers are used in the same grouping of data, so the
squared distance to either is similar). Then this is a good place to choose k.

8.3.1 Extensions to the k-Means Problem and Lloyd’s Algorithm
Like many algorithms in this class, Lloyd’s depends on the use of a SSE cost function. In particular, it works
because for X ∈ Rd, then

1

|X|
∑

x∈X
x = average(X) = arg min

s∈Rd

∑

x∈X
‖s− x‖2.
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There are not similar properties for other costs functions, or when X is not in Rd. For instance, one may
want to solve the k-medians problem where one just minimizes the sum of (non-squared) distances. In
particular, this has no closed form solution for X ∈ Rd for d > 1.

An alternative to the averaging step is to choose

si = arg min
s∈Xi

d(x, s)

where d(x, s) is an arbitrary measure (like non-squared distance) between x and s. That is, we choose an
s from the set Xi. This is particularly useful when X is in a non-Euclidean metric space where averaging
may not be well-defined. For the specific case where d(x, s) = ‖x − s‖ (for the k-median problem), then
this variant of the algorithm is called k-mediods.

Soft clustering. Sometimes it is not desirable to assign each point to exactly one cluster. Instead, we
may split a point between one or more clusters, assigning a fractional value to each. This is known as soft
clustering whereas the original formulation is known as hard clustering.

There are many ways to achieve a soft clustering. For instance, consider the following Voronoi diagram-
based approach called based on natural neighbor interpolation (NNI). Let V (S) be the Voronoi diagram
of the sites S (which decomposes Rd). Then construct V (S ∪ x) for a particular data point x; the Voronoi
diagram of the sites S with the addition of one point x. For the regionRx defined by the point x in V (S∪x),
overlay it on the original Voronoi diagram V (S). This regionRx will overlap with regionsRi in the original
Voronoi diagram; compute the volume vi for the overlap with each such region. Then the fractional weight
for x into each site si is defined wi(x) = vi/

∑n
i=1 vi.

We can plug any such step into Lloyd’s algorithm, and then recalculate si as the weighted average of all
points partially assigned to the ith cluster.

8.4 Mixture of Gaussians
The k-means formulation tends to define clusters of roughly equal size. The squared cost discourages points
far from any center. It also, does not adapt much to the density of individual centers.

An extension is to fit each cluster Xi with a Gaussian distribution G(µi,Σi), defined by a mean µi and a
covariance matrix Σi. Recall that the pdf of a d-dimensional Gaussian distribution is defined

fµ,Σ(x) =
1

(2π)d/2
1√
|Σ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

where |Σ| is the determinant of Σ. For instance, for d = 2, and the standard deviation in the x-direction of
X is σx, and in the y-direction is σy, and their correlation is ρ, then

Σ =

[
σ2
x ρσxσy

ρσxσy σ2
y

]
.

Now the goal is, given a parameter k, find a set of k pdfs F = {f1, f2, . . . , fk} where fi = fµi,Σi to
maximize ∏

x∈X
max
fi∈F

fi(x),

or equivalently to minimize ∑

x∈X
min
fi∈F
− log(fi(x)).
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For the special case where when we restrict that Σi = I (the identity matrix) for each mixture, then one can
check that the second formulation (the log-likelihood version) is equivalent to the k-means problem.

This hints that we can adapt Lloyds algorithm towards this problem as well. To replace the first step of
the inner loop, we assign each x ∈ X to the Gaussian which maximizes fi(x):

for all x ∈ X: assign x to Xi so i = arg max
i∈1...k

fi(x).

But for the second step, we need to replace a simple average with an estimation of the best fitting Gaussian
to a data set Xi. This is also simple. First, calculate the mean as µi = 1

|Xi|
∑

x∈Xi
x. Then calculate the

covariance matrix Σi of Xi as the sum of outer products

Σi =
∑

x∈Xi

(x− µi)(x− µi)T .

This can be interpreted as calling PCA. Calculating µi, and subtracting from each x ∈ Xi is the centering
step. Letting X̄i = {x ∈ µi | x ∈ Xi}, then Σi = V S2V T where [U, S, V ] = svd(X̄i).

8.4.1 Expectation-Maximization
The standard way to fit a mixture of Gaussians actually uses a soft-clustering.

Each point x ∈ X is given a weight wi = fi(x)/
∑

i fi(x) for its assignment to each cluster. Then the
mean and covariance matrix is estimated using weight averages.

Algorithm 8.4.1 EM Algorithm for Mixture of Gaussians
Choose k points S ⊂ X arbitrarily?
for all x ∈ X: set wi(x) for si = φS(x), and wi(x) = 0 otherwise
repeat

for i ∈ [1 . . . k] do
Calculate Wi =

∑
x∈X wi(x) the total weight for cluster i

Set µi = 1
Wi

∑
x∈X wi(x)x the weighted average

Set Σi = 1
Wi

∑
x∈X wi(x− µi)(x− µi)T the weighted covariance

for x ∈ X do
for all i ∈ [1 . . . k]: set wi(x) = fi(x)/

∑
i fi(x) partial assignments using fi = fµi,Σi

until (
∑

x∈X
∑k

i=1− log(wi(x) · fi(x)) has small change)

This procedure is the classic example of a framework called expectation-maximization. This is an alternate
optimization procedure, which alternates between maximizing the probability of some model (the partial
assignment step) and calculating the most likely model using expectation (the average, covariance estimating
step).

But this is a much more general framework. It is particularly useful in situations (like this one) where the
true optimization criteria is messy and complex, often non-convex; but it can be broken into two or more
steps where each step can be solved with a (near) closed form. Or if there is no closed form, but each part is
individually convex, the gradient descent can be invoked.

8.5 Mean Shift Clustering
Now for something completely different. Clustering is a very very broad field with no settled upon approach.
To demonstrate this, we will quickly review an algorithm called mean shift clustering. This algorithm shifts
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each data point individually to its weighted center of mass. It terminates when all points converge to isolated
sets.

First begin with a bivariate kernel function K : X ×X → R such as the (unnormalized) Gaussian kernel

K(x, p) = exp(−‖x− p‖2/σ2)

for some given bandwidth parameter σ. The weighted center of mass around each point p ∈ X is then
defined as

µ(p) =

∑
x∈X K(x, p)x∑
x∈X K(x, p)

.

The algorithm just shifts each point to its center of mass: p← µ(p).

Algorithm 8.5.1 Mean Shift
repeat

for all p ∈ X: calculate µ(p) =
∑

x∈X K(x,p)x∑
x∈X K(x,p) .

for all p ∈ X: set p← µ(p).
until (the average change ‖p− µ(p)‖ is small)

This algorithm does not require a parameter k. However, it has other parameters, most notably the choice
of kernel K and its bandwidth σ. With the Gaussian kernel (since it has infinite support, K(x, p) > 0
for all x, p), it will only stop when all x are at the same point. Thus the termination condition is also
important. Alternatively, a different kernel with bounded support may terminate automatically (without a
specific condition); for this reason (and for speed) truncated Gaussians are often used.

This algorithm not only clusters the data, but also is a key technique for de-noising data. This is a process
that not just removes noise (as often thought of as outliers), but attempts to return point to where they should
have been before being perturbed by noise – similar to mapping a point to its cluster center.
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9 Classification

This topic returns to prediction. Unlike linear regression where we were predicting a numeric value, in this
case we are predicting a class: winner or loser, yes or no, rich or poor, positive or negative. Ideas from
linear regression can be applied here, but we will instead overview a different, but still beautiful family of
techniques based on linear classification.

This is perhaps the central problem in data analysis. For instance, you may want to predict:

• will a sports team win a game?

• will a politician be elected?

• will someone like a movie?

• will someone click on an ad?

• will I get a job? (If you can build a good classifier, then probably yes!)

Each of these is typically solved by building a general purpose classifier (about sports or movies etc), then
applying it to the person in question.

9.1 Linear Classifiers
Our input here is a point set X ⊂ Rd, where each element xi ∈ X also has an associated label yi. And
yi ∈ {−1,+1}.

Like in regression, our goal is prediction and generalization. We assume each (xi, yi) ∼ µ; that is,
each data point pair, is drawn iid from some fixed but unknown distribution. Then our goal is a function
g : Rd → R, so that if yi = +1, then g(xi) ≥ 0 and if yi = −1, then g(xi) ≤ 0.

We will restrict that g is linear. For a data point x ∈ Rd, written x = (x(1), x(2), . . . , x(d)) we enforce that

g(x) = α0 + x(1)α1 + x(2)α2 + . . .+ x(d)αd = α0 +
d∑

j=1

x(j)αj ,

for some set of scalar parameters α = (α0, α1, α2, . . . , αd). Typically, different notation is used: we set
b = α0 and w = (w1, w2, . . . , wd) = (α1, α2, . . . , αd) ∈ Rd. Then we write

g(x) = b+ x(1)w1 + x(2)w2 + . . .+ x(d)wd = 〈w, x〉+ b.

We can now interpret (w, b) as defining a halfspace in Rd. Herew is the normal of that halfspace boundary
(the single direction orthogonal to it) and b is the distance from the origin 0 = (0, 0, . . . , 0) to the halfspace
boundary in the direction w/‖w‖. Because w is normal to the halfspace boundary, b is also distance from
the closest point on the halfspace boundary to the origin (in any direction).

We typically ultimately usew as a unit vector, but it is not important since this can be adjusted by changing
b. Let w, b be the desired halfspace with ‖w‖ = 1. Now assume we have another w′, b′ with ‖w′‖ = β 6= 1
and w = w′/‖w′‖, so they point in the same direction, and b′ set so that they define the same halfspace. This
implies b′ = b/β. So the normalization of w can simply be done post-hoc without changing any structure.

Recall, our goal is g(x) ≥ 0 if y = +1 and g(x) ≤ 0 if y = −1. So if x lies directly on the halfspace
then g(x) = 0.
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Example: Linear Separator in R2

Here we show a set X ∈ R2 of 13 points with 6 labeled + and 7 labeled −. A linear classifier
perfectly separates them. It is defined with a normal direction w (pointing towards the positive
points) and an offset b.

w

b

Using techniques we have already learned, we can immediately apply two approaches towards this prob-
lem.

Linear classification via linear regression. For each data points (xi, yi) ∈ Rd×R, we can immediately
represent xi as the value of d explanatory variables, and yi as the single dependent variable. Then we can
set up a n × (d + 1) matrix M , where the ith row is (1, xi); that is the first coordinate is 1, and the next d
coordinates come from the vector xi. Then with a y ∈ Rn vector, we can solve for

α = (MTM)−1MT y

we have a set of d+ 1 coefficients α = (α0, α1, . . . , αd) describing a linear function g : Rd → R defined

g(x) = 〈α, (1, x)〉.

Hence b = α0 and w = (α1, α2, . . . , αd). For x such that g(x) > 0, we predict y = +1 and for g(x) < 0,
we predict y = −1.

However, this approach is optimizing the wrong problem. It is minimizing how close our predictions
g(x) is to −1 or +1, by minimizing the sum of squared errors. But our goal is to minimize the number of
mispredicted values, not the numerical value.
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Example: Linear Regression for Classification

We show 6 positive points and 7 negative points in Rd mapped to Rd+1. All of the d-coordinates are
mapped to the x-axis. The last coordinate is mapped to the y-axis and is either +1 (a positive points)
or −1 (a negative points). Then the best linear regression fit is shown, and the points where it has
y-coordinate 0 defines the boundary of the halfspace. Note, despite there being a linear separator,
this method misclassifies two points because it is optimizing the wrong measure.

w

b
Rd

R

Linear classification via gradient descent. Since, the linear regression SSE cost function is not the
correct one, what is the correct one? We might define a cost function ∆

∆(g, (X, y)) =
n∑

i=1

(1− 1(sign(yi) = sign(g(xi)))

which uses the identity function 1 (defined 1(TRUE) = 1 and 1(FALSE) = 0) to represent the number of
misclassified points. This is what we would like to minimize.

Unfortunately, this function is discrete, so it does not have a useful (or well-defined) derivative. And, it
is also not convex. Thus, encoding g as a (d + 1)-dimensional parameter vector (b, w) = α and running
gradient descent is not feasible.

However, most classification algorithms run some variant of gradient descent. To do so we will use a
different cost function as a proxy for ∆, called a loss function. We explain this next.

9.1.1 Loss Functions
To use gradient descent for classifier learning, we will use a proxy for ∆ called a loss functions L. These
are sometimes implied to be convex, and their goal is to approximate ∆. And in most cases, they are
decomposable, so we can write

L(g, (X, y)) =

n∑

i=1

`i(g, (xi, yi))

=

n∑

i=1

`i(zi) where zi = yig(xi).

Note that the clever expression zi = yig(xi) handles when the function g(xi) correctly predicts the positive
or negative example in the same way. If yi = +1, and correctly g(xi) > 0, then zi > 0. On the other hand,
if yi = −1, and correctly g(xi) < 0, then also zi > 0. For instance, the desired cost function, ∆ is written

∆(z) =

{
0 if z ≥ 0

1 if z < 0.
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Most loss functions `i(z) which are convex proxies for ∆ mainly focus on how to deal with the case
zi < 0 (or zi < 1). The most common ones include:

• hinge loss: `i = max(0, 1− z)

• smoothed hinge loss: `i =





0 if z ≥ 1

(1− z)2/2 if 0 < z < 1
1
2 − z if z ≤ 0

• squared hinge loss: `i = max(0, 1− z)2

• logistic loss: `i = ln(1 + exp(−z))

z z z z z

`i `i
`i `i

�

hinge smoothed
hinge

squared
hinge

logistic

ReLU

The hinge loss is the closest convex function to ∆; in fact it strictly upper bounds ∆. However, it is
non-differentiable at the “hinge-point,” (at z = 1) so it takes some care to use it in gradient descent. The
smoothed hinge loss and squared hinge loss are approximations to this which are differentiable everywhere.
The squared hinge loss is quite sensitive to outliers (similar to SSE). The smoothed hinge loss (related to the
Huber loss) is a nice combination of these two loss functions.

The logistic loss can be seen as a continuous approximation to the ReLU (rectified linear unit) loss func-
tion, which is the hinge loss shifted to have the hinge point at z = 0. The logistic loss also has easy-to-take
derivatives (does not require case analysis) and is smooth everywhere. Minimizing this loss for classification
is called logistic regression.

9.1.2 Cross Validation and Regularization
Ultimately, in running gradient descent for classification, one typically defines the overall cost function
f also using a regularization term r(α). For instance r(α) = ‖α‖2 is easy to use (has nice derivatives)
and r(α) = ‖α‖1 (the L1 norm) induces sparsity (for reasons not covered in this class). In general, the
regularizer typically penalizes larger values of α, resulting in some bias, but less over-fitting of the data.

The regularizer r(α) is combined with a loss function L(gα, (X, y)) =
∑n

i=1 `i(gα, (xi, yi)) as

f(α) = L(gα, (X, y)) + ηr(α),

where η ∈ R is a regularization parameter that controls how drastically to regularize the solution.
Note that this function f(α) is still decomposable, so one can use batch, incremental, or most commonly

stochastic gradient descent.

Cross-validation. Backing up a bit, the true goal is not minimizing f or L, but predicting the class for
new data points. For this, we again assume all data is drawn iid from some fixed but unknown distribution.
To evaluate how well out results generalizes, we can use cross-validation (holding out some data from the
training, and calculating the expected error of ∆ on these help out “testing” data points).

We can also choose the regularization parameter η by choosing the one that results in the best generaliza-
tion on the test data after training using each on some training data.
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9.2 Perceptron Algorithm
Of the above algorithms, generic linear regression is not solving the correct problem, and gradient descent
methods do not really use any structure of the problem. In fact, we could have replaced the linear function
gα(x) = 〈α, (1, x)〉 with any function g (even non-linear ones) as long as we can take the gradient.

Now we will introduce the perceptron algorithm which explicitly uses the linear structure of the problem.
(Technically, it only uses the fact that there is an inner product – which we will exploit in generalizations.)

Simplifications: For simplicity, we will make several assumptions about the data. First we will assume
that the best linear classifier (w∗, b∗) defines a halfspace whose boundary passes through the origin. This
implies b∗ = 0, and we can ignore it. This is basically equivalent to (for data point (x′i, yi) ∈ Rd′ ×R using
xi = (1, x′i) ∈ Rd where d′ + 1 = d.

Second, we assume that for all data points (xi, yi) that ‖xi‖ ≤ 1 (e.g., all data point live in a unit ball).
This can be done by choosing the point xmax ∈ X with largest norm ‖xmax‖, and dividing all data points
by ‖xmax‖ so that point has norm 1, and all other points have smaller norms.

Finally, we assume that there exists a perfect linear classifier. One that classifies each data point to the
correct class. There are variants to deal with the cases without perfect classifiers, but which are beyond the
scope of this class.

The algorithm. Now to run the algorithm, we start with some normal direction w (initialized as any
positive point), and then add mis-classified points to w one at a time.

Algorithm 9.2.1 Perceptron(X)

Initialize w = yixi for any (xi, yi) ∈ (X, y)
repeat

For any (xi, yi) such that yi〈xi, w〉 < 0 (is mis-classified) : update w ← w + yixi
until (no mis-classified points or T steps)
return w ← w/‖w‖

Basically, if we find a mis-classified point (xi, yi) and yi = +1, then we set w = w + xi. This makes w
“point” more in the direction of xi, but also makes it longer. Having w more in the direction of w, tends to
make it have dot-product (with a normalized version of w) closer to 1.

Similar, if we find a mis-classified point (xi, yi) with yi = −1, the we set w = w − xi; this points the
negative of w more towards xi, and thus w more away from xi, and thus its dot product more likely to be
negative.

The margin. To understand why the perceptron works, we need to introduce the concept of a margin.
Given a classifier (w, b), the margin is

γ = min
(xi,yi)∈X

yi(〈w, xi〉+ b).

Its the minimum distance of any data point xi to the boundary of the halfspace. In this sense the optimal
classifier (or the maximum margin classifier) (w∗, b∗) is the one that maximizes the margin

(w∗, b∗) = arg max
(w,b)

min
(xi,yi)∈X

yi(〈w, xi〉+ b)

γ∗ = min
(xi,yi)∈X

yi(〈w∗, xi〉+ b∗).

A max-margin classifier, is one that not just classifies all points correctly, but does so with the most
“margin for error.” That is, if we perturbed any data point or the classifier itself, this is the classifier which
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can account for the most perturbation and still predict all points correctly. It also tends to generalize (in the
cross-validation sense) to new data better than other perfect classifiers.

Example: Margin of Linear Classifier

For a set X of 13 points in R2, and a linear classifier defined with (w, b). We illustrate the margin in
pink. The margin γ = min(xi,yi) yi(〈w, xi〉 + b). The margin is drawn with an↔ for each support
point.

w

b

The maximum margin classifier (w∗, b∗) for X ⊂ Rd can always be defined uniquely by d+ 1 points (at
least one negative, and at least one positive). These points S ⊂ X are such that for all (xi, yi) ∈ S

γ∗ = yi〈w∗, xi〉+ b.

These are known as the support points, since they “support” the margin strip around the classifier boundary.

Why perceptron works. We claim that after at most T = (1/γ∗)2 steps (where γ∗ is the margin of the
maximum margin classifier), then there can be no more mis-classified points.

To show this we will bound two terms as a function of t, the number of mistakes found: 〈w,w∗〉 and
‖w‖2 = 〈w,w〉, before we ultimately normalize w in the return step.

First we can argue that ‖w‖2 ≤ t, since each step increases ‖w‖2 by at most 1:

〈w + yixi, w + yixi〉 = 〈w,w〉+ (yi)
2〈xi, xi〉+ 2yi〈w, xi〉 ≤ 〈w,w〉+ 1 + 0.

This is true since if xi is mis-classified, then yi〈w, xi〉 is negative.
Second, we can argue that 〈w,w∗〉 ≥ tγ∗ since each step increases it by at least γ∗. Recall that ‖w∗‖ = 1

〈w + yixi, w
∗〉 = 〈w,w∗〉+ (yi)〈xi, w∗〉 ≥ 〈w,w∗〉+ γ∗.

The inequality follows from the margin of each point being at least γ∗ with respect to the max-margin
classifier w∗.

Combining these facts together we obtain

tγ∗ ≤ 〈w,w∗〉 ≤ 〈w, w

‖w‖〉 = ‖w‖ ≤
√
t.

Solving for t yields t ≤ (1/γ∗)2 as desired.
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9.3 Kernels
It turns out all we need to get any of the above machinery to work is a well-defined (generalized) inner-
product. For two vectors p = (p1, . . . , pd), q = (q1, . . . , qd) ∈ Rd, we have always used as the inner
product:

〈p, q〉 =
d∑

i=1

pi · qi.

However, we can define inner products more generally as a kernel K(p, q). For instance, we can use

• K(p, q) = exp(−‖p− q‖2/σ2) for the Gaussian kernel, with bandwidth σ,

• K(p, q) = exp(−‖p− q‖/σ) for the Laplace kernel, with bandwidth σ, and

• K(p, q) = (〈p, q〉+ c)r for the polynomial kernel of power r, with control parameter c > 0.

Then we define our classification function

g(x) = K(x,w) + b.

If g(x) > 0, we classify x as positive, and if g(x) < 0, we classify x as negative.
For gradient decent, again α = (α0, α1, . . . , αd) = (b, w). We just need to take the gradient for each term

of the loss function `i(zi) for zi = yig(xi) as before.
And for perceptron, we check yiK(xi, w) > 0 to see if (xi, yi) is mis-classified, and still simply add

w ← w + yixi as before.

Are these linear classifers? No. In fact, this is how you model various forms of non-linear classifiers.
The “decision boundary” is no longer described by the boundary of a halfspace. For the polynomial kernel,
the boundary must now be a polynomial surface of degree r. For the Gaussian and Laplace kernel it can be
even more complex; the σ parameter essentially bounds the curvature of the boundary.

9.4 kNN Classifiers
Now for something completely different. There are many ways to define a classifier, and we have just
touched on some of them. These include decision trees (which basically just ask a series of yes/no questions
and are very interpretable) to deep neural networks (which are more complex, far less interpretable, but can
achieve more accuracy). We will describe one more simple classifier.

The k-NN classifier (or k-nearest neighbors classifier) works as follows. Choose a scalar parameter
k (it will be far simpler to choose k as an odd number, say k = 5). Next define a majority function
maj : {−1,+1}k → {−1,+1}. For a set Y = (y1, y2, . . . , yk) ∈ {−1,+1}k it is defined

maj(Y ) =

{
+1 if more than k/2 elements of Y are +1

−1 if more than k/2 elements of Y are −1.

Then for a data set X where each element xi ∈ X has an associated label yi ∈ {−1,+1}, define a k-nearest
neighbor function φX,k(z) that returns the k points in X which are closest to a query point z. Next let sign
report yi for any input point xi; for a set of inputs xi, it returns the set of values yi.

Finally, the k-NN classifier is
g(z) = maj(sign(φX,k(z))).

That is, it finds the k-nearest neighbors of query point z, and considers all of the class labels of those points,
and returns the majority vote of those labels.
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A query point z near many other positive points will almost surely return +1, and symmetrically for
negative points. This classifier works surprisingly well for many problems but relies on a good choice of
distance function to define φX,k.

Unfortunately, the model for the classifier depends on all of X . So it may take a long time to evaluate on
a large data set X . In contrast the functions g for all methods above take O(d) time to evaluate for points in
Rd, and thus are very efficient.

9.5 Neural Networks
A neural network is a learning algorithm intuitively based on how a neuron works in the brain. A neuron
takes in a set of inputs x = (x1, x2, . . . , xd) ∈ Rd, weights each input by a corresponding scalar w =
(w1, w2, . . . , wd) and “fires” a signal if the total weight

∑d
i=1wixi is greater than some threshold b.

x1

x2

xd wd

w1

> b?
{0, 1}

w2

w3

x3
dX

j=1

wi · xi � b = hx, wi � b > 0?

A neural network, is then just a network or graph of these neurons. Typically, these are arranged in layers.
In the first layer, there may be d input values x1, x2, . . . , xd. These may provide the input to t neurons (each
neuron might use fewer than all inputs). Each neuron produces an output y1, y2, . . . , yt. These outputs then
serve as the input to the second layer, and so on.

Once the connections are determined, then the goal is to learn the weights on each neuron so that for a
given input, a final neuron fires if the input satisfies some pattern (e.g., the input are pixels to a picture, and
it fires if the picture contains a car). This is theorized to be “loosely” how the human brain works.

Given a data set X with labeled data points (x, y) ∈ X (with x ∈ Rd and y ∈ {−1,+1}), we already
know how to train a single neuron so for input x it tends to fire if y = 1 and not fire if y = −1. It is just
a linear classifier. So, we can use the perceptron algorithm, or gradient descent with a well-chosen loss
function!

However, for neural networks to attain more power than simple linear classifiers, they need to be at least
two layers. Many amazing advances have come from so-called “deep neural networks” or ”deep learning”
or ”deep nets” which are neural networks with many layers (say 20 or more). For these networks, the
perceptron algorithm no longer works since it does not properly propagate across layers. However, a version
of gradient descent called back-propagation can be used. Getting deep nets to work can be quite finicky.
Their optimization function is not convex, and without various training tricks, it can be very difficult to find
a good global set of weights. (The full details of this approach is well beyond the scope of this class.)
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