Date |
Chapter |
Topic |
Assignment |
Mon 8.19 |
|
Class Overview |
|
Wed 8.21 |
Ch 1 - 1.2 |
Probability Review : Sample Space, Random Variables, Independence |
|
Mon 8.26
| Ch 1.3 - 1.6 |
Probability Review : PDFs, CDFs, Expectation, Variance, Joint and Marginal Distributions |
HW1 out |
Wed 8.28 |
Ch 1.7 |
Bayes Rule |
|
Mon 9.02 |
|
LABOR DAY |
|
Wed 9.04 |
Ch 1.8 |
Bayes Rule : Bayesian Reasoning |
|
Mon 9.09 |
Ch 2.1 |
Convergence : Central Limit Theorem and Estimation |
|
Wed 9.11 |
Ch 2.2 - 2.3 |
Convergence : PAC Algorithms and Concentration of Measure |
HW 1 due |
Mon 9.16 |
Ch 3.1 - 3.2 |
Linear Algebra Review :
Vectors, Matrices, Multiplication and Scaling |
Quiz 1 |
Wed 9.18 |
Ch 3.3 - 3.5 |
Linear Algebra Review :
Norms, Linear Independence, Rank (colab) |
HW 2 out |
Mon 9.23 |
Ch 3.6 - 3.8 |
Linear Algebra Review :
Inverse, Orthogonality, numpy |
|
Wed 9.25 |
Ch 5.1 |
Linear Regression :
dependent, independent variables (colab) |
|
Mon 9.30 |
Ch 5.2-5.3 |
Linear Regression :
multiple regression (colab), polynomial regression (colab) |
HW 2 due |
Wed 10.02 |
Ch 5 |
Linear Regression :
mini review + slack |
Quiz 2 |
Mon 10.09 |
|
FALL BREAK |
|
Wed 10.11 |
|
FALL BREAK |
|
Mon 10.14 |
Ch 5.4 |
Linear Regression :
overfitting and cross-validation (colab) |
HW 3 out |
Wed 10.16 |
Ch 6.1 - 6.2 |
Gradient Descent :
functions, minimum, maximum, convexity & gradients |
|
Mon 10.21 |
Ch 6.3 |
Gradient Descent :
algorithmic variants (colab) |
|
Wed 10.23 |
Ch 6.4 |
Gradient Descent :
fitting models to data and stochastic gradient descent |
|
Mon 10.28 |
Ch 7.1 - 7.2 |
PCA :
SVD (colab) |
|
Wed 10.30 |
Ch 7.2 - 7.3 |
PCA :
rank-k approximation and eigenvalues |
HW 3 due |
Mon 11.04 |
Ch 7.4 |
PCA :
power method (colab) |
HW 4 out |
Wed 11.06 |
Ch 7.5 - 7.6 |
PCA :
centering, MDS, and dimensionalty reduction + (practice quiz) |
|
Mon 11.11 |
Ch 8.1 |
Clustering :
Voronoi Diagrams |
Quiz 3 |
Wed 11.13 |
Ch 8.3 |
Clustering :
k-means |
|
Mon 11.18 |
Ch 8.4, 8.7 |
Clustering :
EM, Mixture of Gaussians, Mean-Shift |
|
Wed 11.20 |
Ch 9.1 |
Classification :
Linear prediction |
HW 4 due |
Mon 11.25 |
Ch 9.2 |
Classification :
Perceptron Algorithm |
HW 5 out |
Wed 11.27 |
Ch 9.3 |
Classification :
Kernels and SVMs |
|
Mon 12.02 |
Ch 9.4 - 9.5 |
Classification :
Neural Nets |
Quiz 4 |
Wed 12.04 |
|
In-class review |
|
Fri 12.06 |
|
|
HW 5 due |
Thu 12.12 |
|
FINAL EXAM (3:30pm - 5:30pm) |
(practice) |