Date |
Topic |
Assignment |
Mon 8.21 |
Class Overview |
|
Wed 8.23 |
Probability Review : Sample Space, Random Variables, Independence |
|
Mon 8.28 |
Probability Review : PDFs, CDFs, Expectation, Variance, Joint and Marginal Distributions |
HW1 out |
Wed 8.30 |
Bayes Rule |
|
Mon 9.04 |
LABOR DAY |
|
Wed 9.06 |
Bayes Rule : Bayesian Reasoning |
|
Mon 9.11 |
Convergence : Central Limit Theorem and Estimation |
|
Wed 9.13 |
Convergence : PAC Algorithms and Concentration of Measure |
HW 1 due |
Mon 9.18 |
Linear Algebra Review :
Vectors, Matrices, Multiplication and Scaling |
Quiz 1 |
Wed 9.20 |
Linear Algebra Review :
Norms, Linear Independence, Rank |
HW 2 out |
Mon 9.25 |
Linear Algebra Review :
Inverse, Orthogonality, numpy |
|
Wed 9.27 |
Linear Regression :
dependent, independent variables |
|
Mon 10.02 |
Linear Regression :
multiple regreesion, polynomial regression |
HW 2 due |
Wed 10.04 |
Linear Regression :
mini review + slack |
Quiz 2 |
Mon 10.11 |
FALL BREAK |
|
Wed 10.13 |
FALL BREAK |
|
Mon 10.16 |
Linear Regression :
overfitting and cross-validation |
HW 3 out |
Wed 10.18 |
Gradient Descent :
functions, minimum, maximum, convexity |
|
Mon 10.23 |
Gradient Descent :
gradients and algorithmic variants |
|
Wed 10.25 |
Gradient Descent :
fitting models to data and stochastic gradient descent |
|
Mon 10.30 |
PCA :
SVD |
|
Wed 11.01 |
PCA :
rank-k approximation and eigenvalues |
HW 3 due |
Mon 11.06 |
PCA :
power method |
HW 4 out |
Wed 11.08 |
PCA :
centering, MDS, and dimensionalty reduction |
|
Mon 11.13 |
Clustering :
Voronoi Daigrams |
Quiz 3 |
Wed 11.15 |
Clustering :
k-means |
|
Mon 11.20 |
Clustering :
EM, Mixture of Gaussians, Mean-Shift |
|
Wed 11.22 |
Classification :
Linear prediction |
HW 4 due |
Mon 11.27 |
Classification :
Perceptron Algorithm |
HW 5 out |
Wed 11.29 |
Classification :
Kernels and SVMs |
|
Mon 12.04 |
Classification :
Neural Nets |
Quiz 4 |
Wed 12.06 |
In-class review |
|
Fri 12.08 |
|
HW 5 due |
Tue 12.12 |
FINAL EXAM (3:30pm - 5:30pm) |
(practice) |
Thu 12.14 |
|
HW 4R due |