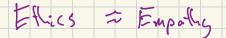
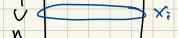

L21: Privacy


Jeff M. Phillips


April 2, 2025

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Early 2000s

bis companies

control lode l date usually on customers

mater date poblic (sometimes)

Late 2000s His stopped.

STORY TIME:

In 2000, Massachusetts released all State employee's medical records in an effort for researchers to be able to study them.

STORY TIME:

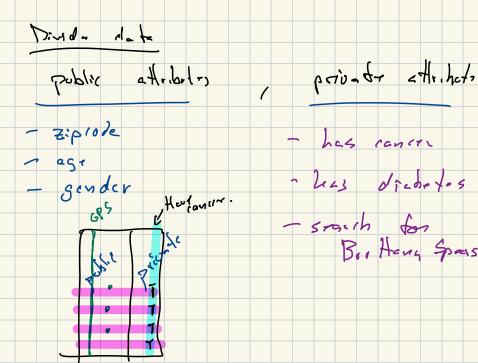
- In 2000, Massachusetts released all State employee's medical records in an effort for researchers to be able to study them.
- They wiped all ids, but kept zip codes, birthday, gender. Was declared anonymized by the government.

STORY TIME:

- In 2000, Massachusetts released all State employee's medical records in an effort for researchers to be able to study them.
- They wiped all ids, but kept zip codes, birthday, gender. Was declared anonymized by the government.
- In Massachusetts, it was possible to buy voter data for \$20. It has names, zip codes, and gender of all voters.

STORY TIME:

- In 2000, Massachusetts released all State employee's medical records in an effort for researchers to be able to study them.
- They wiped all ids, but kept zip codes, birthday, gender. Was declared anonymized by the government.
- In Massachusetts, it was possible to buy voter data for \$20. It has names, <u>zip code</u>s, and gender of all voters.
- A (then) grad student, Latanya Sweeney combined the two to identify the governor of Massachusetts. Story is, she mailed him his own health records!


(日) (同) (三) (三) (三) (○) (○)

STORY TIME:

- In 2000, Massachusetts released all State employee's medical records in an effort for researchers to be able to study them.
- They wiped all ids, but kept zip codes, birthday, gender. Was declared anonymized by the government.
- In Massachusetts, it was possible to buy voter data for \$20. It has names, zip codes, and gender of all voters.
- A (then) grad student, Latanya Sweeney combined the two to identify the governor of Massachusetts. Story is, she mailed him his own health records!

Dr. Sweeney now teaches at Harvard.

How can we release date anonymously while poeseoving information? Gont: Represent into so no ron doon generalozation. te-anonymites. Remove affeibiles (from short) unter each combination of ethributes aucilable, maps de at least Different secolds.

l-divisity tz-zmingmits early group, had private attributes divers. values. What it all in soorp had Rither conces on Dead-orig E-closeness: l-diversity (F) the privato hists were close (in distribution) do all alata.

<□ > < @ > < E > < E > E のQ @

STORY TIME:

In 2006, Netflix (e.g., DVDs) released awesome data sets D₁ = {⟨user-id, movie, date of grade, grade⟩}. And another set D₂ = {⟨user-id, movie, date of grade⟩}. Wants researchers to predict grade on D₂. (Had another similar private data D₃ to evaluate grades : cross validation.)

1, 2, 3, 4, 5

STORY TIME:

- In 2006, Netflix (e.g., DVDs) released awesome data sets D₁ = {⟨user-id, movie, date of grade, grade⟩}. And another set D₂ = {⟨user-id, movie, date of grade⟩}. Wants researchers to predict grade on D₂. (Had another similar private data D₃ to evaluate grades : cross validation.)
- ► If certain improvement over Netflix's algorithm, get \$1 million!

STORY TIME:

- In 2006, Netflix (e.g., DVDs) released awesome data sets D₁ = {⟨user-id, movie, date of grade, grade⟩}. And another set D₂ = {⟨user-id, movie, date of grade⟩}. Wants researchers to predict grade on D₂. (Had another similar private data D₃ to evaluate grades : cross validation.)
- If certain improvement over Netflix's algorithm, get \$1 million!

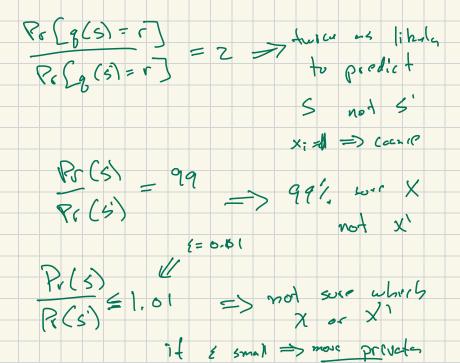
Led to lots of cool research!

STORY TIME:

- In 2006, Netflix (e.g., DVDs) released awesome data sets D₁ = {⟨user-id, movie, date of grade, grade⟩}. And another set D₂ = {⟨user-id, movie, date of grade⟩}. Wants researchers to predict grade on D₂. (Had another similar private data D₃ to evaluate grades : cross validation.)
- If certain improvement over Netflix's algorithm, get \$1 million!
- Led to lots of cool research!
- Raters of movies also rated on IMDB (w/ user id, time stamp)

STORY TIME:

- In 2006, Netflix (e.g., DVDs) released awesome data sets D₁ = {⟨user-id, movie, date of grade, grade⟩}. And another set D₂ = {⟨user-id, movie, date of grade⟩}. Wants researchers to predict grade on D₂. (Had another similar private data D₃ to evaluate grades : cross validation.)
- If certain improvement over Netflix's algorithm, get \$1 million!
- Led to lots of cool research!
- Raters of movies also rated on IMDB (w/ user id, time stamp)
- Researchers showed that by linking who rated similar sets of movies, with similar scores and times, they could identify many people.

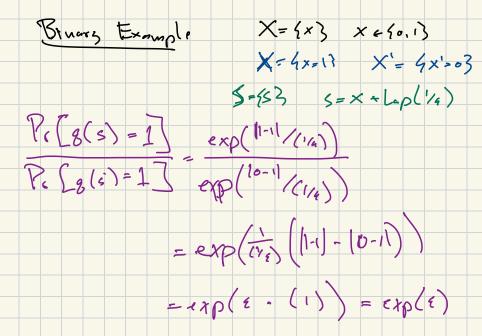

STORY TIME:

- In 2006, Netflix (e.g., DVDs) released awesome data sets D₁ = {⟨user-id, movie, date of grade, grade⟩}. And another set D₂ = {⟨user-id, movie, date of grade⟩}. Wants researchers to predict grade on D₂. (Had another similar private data D₃ to evaluate grades : cross validation.)
- If certain improvement over Netflix's algorithm, get \$1 million!
- Led to lots of cool research!
- Raters of movies also rated on IMDB (w/ user id, time stamp)
- Researchers showed that by linking who rated similar sets of movies, with similar scores and times, they could identify many people.
- (maybe watched embarrassing films on Netflix, not listed on IMDB)

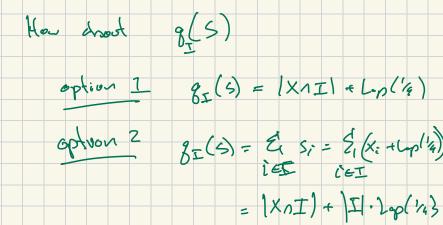
- In 2006, Netflix (e.g., DVDs) released awesome data sets D₁ = {⟨user-id, movie, date of grade, grade⟩}. And another set D₂ = {⟨user-id, movie, date of grade⟩}. Wants researchers to predict grade on D₂. (Had another similar private data D₃ to evaluate grades : cross validation.)
- If certain improvement over Netflix's algorithm, get \$1 million!
- Led to lots of cool research!
- Raters of movies also rated on IMDB (w/ user id, time stamp)
- Researchers showed that by linking who rated similar sets of movies, with similar scores and times, they could identify many people.
- (maybe watched embarrassing films on Netflix, not listed on IMDB)
- Class action lawsuit filed (lated dropped) against Netflix.

- In 2006, Netflix (e.g., DVDs) released awesome data sets D₁ = {⟨user-id, movie, date of grade, grade⟩}. And another set D₂ = {⟨user-id, movie, date of grade⟩}. Wants researchers to predict grade on D₂. (Had another similar private data D₃ to evaluate grades : cross validation.)
- If certain improvement over Netflix's algorithm, get \$1 million!
- Led to lots of cool research!
- Raters of movies also rated on IMDB (w/ user id, time stamp)
- Researchers showed that by linking who rated similar sets of movies, with similar scores and times, they could identify many people.
- (maybe watched embarrassing films on Netflix, not listed on IMDB)
- Class action lawsuit filed (lated dropped) against Netflix.
- Netflix Prize had proposed sequel, dropped in 2010 for more privacy concerns.

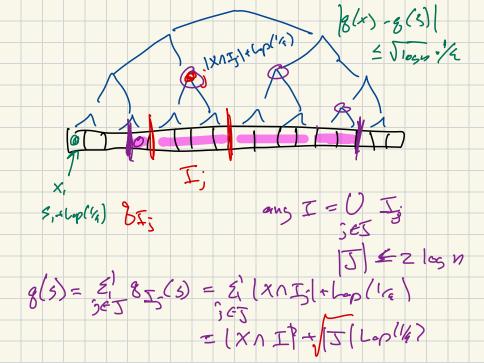
Defleventic Privery · Courantee on silensid D. 50 if 2k P2 50 liff(D, D,)=1 r. (B (D)] Good release D. w guesg w/ nois-50 all gorig evi (g (A)) ustoria 2-f(2)


Laplation Michanism addy Laplace noise Lydx; w) $L_{ap}(x; w) = \frac{1}{2w} exp(-\frac{|x|}{w})$ 5= {si} each si= X: + Lop(1/2=w) $X = \{x, x_3, \dots, x_m\}$ $S = \{x, x_3, \dots, x_m\}$ V = Lup(*k) $S = \{x, x_3, \dots, x_m\}$

Huight X=5x3 x= 66 inches x = 67 inches X'= {x'}


w= 1

 $S = M(x) = x + L_{op}(' \epsilon)$


= exp(1/w(166-70) -167-70)) $= \exp(z(1)) = \exp(z)$

X= {x, x, ... Yn } X: Eleit Binag detabase $X' = 4x', x_{7}, \dots, x_{n}$ somt $x_{i} \neq x_{i}$ R=Interval $\int = \left[a_1b\right]$ IAX = { Xa, Xci, Xaro ... Yh $g_{I}(x) = \xi_{i} \times i = [X \land I]$ $\frac{1}{1} = \begin{bmatrix} a \\ a \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$ S = M(X) $\{s_1, \dots, s_m\}$ $s_5 = X_5 + Lep(Y_4)$ Leplacian Machanism

4/1I). Lop (1/4) $\left(g_{\mp}(5) - g_{\mp}(x)\right)$ = Jn ((2)

