9 Assignment-based Clustering

Probably the most famous clustering formulation is k-means. This is the focus today. Note: k-means is
not an algorithm, it is a problem formulation. We will also discuss other variants, noteably the k-center
clustering algorithm.

9.1 Variants of Assignment-based Clustering

In general we consider the family of assignment-based clusterings. Each cluster is represented by a single
point, to which all other points in the cluster are “assigned.” Consider a set X, and distance d : X X
X — Ry, and the output is a set C = {c1,¢,...,c}. This implicitly defines a set of clusters where
¢c(x) = argmin.cc d(z, ¢). That is cluster S; C X is defined S; = {z € X | ¢c(z) = ¢;}.

There are 4 popular (and commonly named) variants — although other versions could be considered as
well.

1. The k-means clustering problem is to find the set C of k clusters (often, but not always as a subset of
X)to
minimize Z d(pc(z), x)?.
zeX
So we assign every point to the closest center, and want to minimize the sum of the squared distance
of all such assignments.
The most common algorithm is called Lloyd’s algorithm which only works when d is the Euclidean
distance (or some very similar geodesic measures).

2. The k-center clustering problem finds the center set C of size k, to minimize the furthest assignment,
specifically aiming for

minimize maxd(¢c(x),).
reX

The common algorithm is called Gonzalez Algorithm which provides a 2-approximation and applies
generally to any metric space. This method is used in diversity maximization.

3. The k-median clustering problem just minimizes the sum of assignment costs.

minimize Z d(¢pc(z),).

zeX

If it is probably the most obvious formulation, and is more robust to outliers than k-means or certainly
k-center, but there is not a clever and simple iterative method to solve it — like Gonzalez or Lloyds.

4. The k-medioid variant is similar to k-median, but restricts that the centers C must be a subset of P. If
one is going to restrict C' C X, and wants something more robust to outliers than Gonzalez, then this
is the popular formulation. Typically any heuristic will work in any metric space.

9.2 Gonzalez Algorithm for k-Center Clustering

Here we want every point assigned to the closest center, and want to minimize the longest distance of any
such assignment.

Unfortunately, the k-center clustering problem is NP-hard to solve exactly. In fact, it is NP-hard to find a
clustering within a factor 2 of the optimal cost in a general metric space!

Luckily, there is an algorithm that achieves this factor 2 approximation, it is quite fast, applies to any
metric distance, and it works very well in practice. It is usually attributed to Gonzalez (1985). The lesson is:

Be greedy, and avoid your neighbors!

Algorithm 9.2.1 Gonzalez Greedy Algorithm for k-Center Clustering
Choose ¢; € X arbitrarily. Let C = {c1}.
(In general let C; = {c1,...,c;}.)
for: =2to k do
Set ¢; = arg maxzex d(z, ¢c;_, ()).

As Algorithm 9.2.1 describes, the algorithm is to always pick the point in = that is furthest from the
current set of centers, and let it also be a center.

In the worst case, this is a 2-approximation to the optimal clustering for the k-center clustering problem.
But is often much better in practice. And note again that this works for any distance metric d.

It only takes time about kn = O(kn). There are k rounds, and each round can be done in about n time.
We maintain the map ¢¢,(x) for each x. When a new ¢; is found, and added to the set of centers, all n
assignments ¢¢; (x) can be updated in linear O(n) time, by checking each distance d(z, ¢¢, , (x)) against
d(z, ¢;) and switching the assignment if the later is smaller. Then the minimum can be found in the next
round on a linear scan (or on the same linear scan).

Algorithm 9.2.2 Detailed Gonzalez Greedy Algorithm for k-Center Clustering
Choose ¢; € X arbitrarily, and set ¢[j] = 1 for all j € [n]
fori =2tokdo
M = 0, C; = X1
for j = 1ton do
if d(z;, cg5) > M then
M = d(xj,chpj))s i =
forj =1tondo
if d(w;, cyp;) > d(y, ¢;) then
oljl =i

However, it biases the choice of centers to be on the “edges” of the dataset.

9.3 Lloyd’s Algorithm (for k-Means Clustering)
When people think of the k-means problem, they usually think of the following algorithm. It is usually
attributed to Lloyd from a document in 1957, although it was not published until 1982 [9].

If the main loop has R rounds, then this take roughly Rnk steps (and can be made closer to En log k with
faster nearest neighbor search in some cases).

But what is R?

e Itis finite. The cost (3", v (d(z, dc(x))?)) is always decreasing (for both steps inside the for loop).
There are a finite (precisely, (Z’) = O(n*)) number of possible distinct cluster centers. If each assign-
ment has a cost, it can only visit them in decreasing order — so at most once each. Thus it eventually
stops. But it could be exponential in &k and d (the dimension when Euclidean distance used).

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

Algorithm 9.3.1 Lloyd’s Algorithm for k-Means Clustering
Choose k points C C X [...arbitrarily?]
repeat
Forall x € X, find ¢¢c(x) (closest center ¢ € C' to z)
For all i € [k] let ¢; = average{z € X | ¢c(z) = ¢;}
until The set C' is unchanged

e However, usually R = 10 is fine; maybe a bit more if | X'| and k are very large.

Lesson: there are intricately created special cases that can cause the algorithm to iterate a surprisingly
long time, but usually it works well (but not always). Recall:

When data is easily cluster-able, most clustering algorithms work quickly and well.
When data is not easily cluster-able, then no algorithm will find good clusters.

9.3.1 Lloyd’s Algorithm Can Get Stuck In Non-Optimal Solution

There is no guarantee that the iteration finds the optimal assignment when it stops iterating. The cost always
decreases, but it might be in a local optimum.

This means Lloyd’s algorithm does not “solve” the k-means problem.

For this reason, we usually initialize the clusters C' in Lloyd’s in multiple times (with randomness). The
method is re-run. And ultimately the lowest cost solution is returned.

9.3.2 |Initializing C
The goal is to get one point from each final cluster. Then it will converge quickly. Here are initial (not totally
recommended) options:

e Random set of k points. By coupon collectors, we know that we need about k log k to get one in each
cluster. We could thus oversample & log k clusters, run Lloyd’s, and then merge nearby clusters (like
in HAC) until we get k.

But if the cluster sizes are imbalanced, we would need more than k log & at initialization.

e Randomly partition X = {X1, Xo,..., X} } and take ¢; = average(X;). This biases towards “cen-
ter” of the full set X (e.g., via Central Limit Theorem).

e Gonzalez algorithm [6] (for k-center). This may bias too much to outlier points. Moreover, it is
deterministic, so (given a first center choice) we only get one output — if its not good, we are out of
luck.

k-means++ Since the above approaches all have issues, the accepted best way to seed Lloyd’s algorithm
has become k-means++, an algorithm by Arthur and Vassilvitskii [3].

Algorithm 9.3.2 k-Means++ Algorithm
Choose ¢; € X arbitrarily. Let C = {c1}.
(In general let C; = {c1,...,¢i}.)
for i =2to kdo
Choose ¢; from X with probability proportional to d(z, ¢, , (7))>.

As Algorithm 9.3.2 describes, the algorithm is like Gonzalez algorithm, but is not completely greedy. It
iteratively chooses each next center randomly — the further the squared distances is from an existing center,

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

the more likely it is chosen. For a large set of points (perhaps grouped together) which are far from an
existing center, then it is very likely that one (does not matter so much which one) of them will be chosen as
the next center. This makes it likely that any “true” cluster will find some point as a suitable representative.

One can prove that with enough randomized k-means++ initializations that for any data set, one will find
an approximately optimal solution, within a O(logn) factor.

It works very well in practice, and is now part of the default setting for most libraries that run a method
for k-means.

If one wants a stronger (1+-¢)-approximation (for any € > 0), then something like nk-(log n) time
is the best known, and is unlikely to be improved (is APX-HARD when d = 2(log n)). These approaches
can start with the set of k-means++ initializations, and then try to locally refine them by more explicitly
considering more complex changes.

(/=)@

9.4 Problems with i-Means

o The key step that makes Lloyd’s algorithm so natural and clean is

average{x € X} = arg min Z e — |2
CeRd.’EEX

But this only works with d(z, ¢) = ||z — ¢||2.

As an alternative, can enforce that C' C X. Then choose each ¢; from {x € X | ¢c(x) = ¢;} that
minimizes distance. But this is slower, since it requires checking many choices. And typically, one
would then consider the k-medioid formulation if we restrict C C X.

e It is effected by outliers more than k-median clustering. Can adapt Lloyd’s algorithm, but then step
two (recentering) is harder: The k-median’s associated center step (minimize sum of distances) is
called the Fermet-Weber problem [10, 5] and is surprisingly complicated — but for the most part, can
be approximated with gradient descent.

e k-means tends to enforces equal-sized clusters, when all else equal. It is based on the distance to
cluster centers, not density.

One adaptation that perhaps has better modeling is the EM formulation: Expectation-Maximization.
It models each cluster as a Gaussian distribution G; centered at ¢;, see more details below.

Yet, this is still probably the most widely used clustering formulation.

9.5 Mixture of Gaussians

The k-means formulation tends to define clusters of roughly equal size. The squared cost discourages points
far from any center. It also, does not adapt much to the density of individual centers.

An extension is to fit each cluster X; with a Gaussian distribution G(p;, %;), defined by a mean p; and a
covariance matrix ;. Recall that the pdf of a d-dimensional Gaussian distribution is defined

1 1 1 Tl
= = —_ - E -

o) = oy g (-3 - 05)

where |X| is the determinant of . For instance, for d = 2, and the standard deviation in the z-direction of

X is 0, and in the y-direction is o, and their correlation is p, then

5 02 poyoy
PO Loy 05 '

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

Now the goal is, given a parameter k, find a set of k pdfs F' = {f1, f2,..., fr} where f; = f,, =, to

maximize
max

[max fifa

rxeX
For the special case where when we restrict that >; = I (the identity matrix) for each mixture, then this is
equivalent to the k-means problem.

This hints that we can adapt Lloyds algorithm towards this problem as well. To replace the first step of

the inner loop, we assign each = € X to the Gaussian which maximizes f;(z):

for all z € X: assign z to X; so i = arg max fi(x).
el

But for the second step, we need to replace a simple average with an estimation of the best fitting Gaussian
to a data set X;. This is also simple. First, calculate the mean as p; = ﬁ Zze X, T Then calculate the
covariance matrix >; of X; as the sum of outer products

Y = Z (& — pi) (@ —)"

zeX;

9.5.1 Expectation-Maximization

The standard way to fit a mixture of Gaussians actually uses a soft-clustering.
Each point € X is given a weight w; = f;(z)/)_, fi(x) for its assignment to each cluster. Then the
mean and covariance matrix is estimated using weight averages.

Algorithm 9.5.1 EM Algorithm for Mixture of Gaussians

Choose k points S C X arbitrarily?
forall x € X: set w;(x) for s; = ¢pg(z), and w;(x) = 0 otherwise
repeat
foric[1...k]do
Calculate W; = > wi(x) the total weight for cluster i
Set p; = WLZ Y owex WizT)T the weighted average
Set¥; = Wil > ex wilz — i)z — pa)T the weighted covariance
for x ¢ X do
foralli € [1...k]: setw;(z) = fi(x)/ >, fi(z) partial assignments using f; = fu, s,

until 3 Zle —log(w;(x) - fi(x)) has small change)

This procedure is the classic example of a framework called expectation-maximization. This is an alternate
optimization procedure, which alternates between maximizing the probability of some model (the partial
assignment step) and calculating the most likely model using expectation (the average, covariance estimating
step).

But this is a much more general framework. It is particularly useful in situations (like this one) where the
true optimization criteria is messy and complex, often non-convex; but it can be broken into two or more
steps where each step can be solved with a (near) closed form. Or if there is no closed form, but each part is
individually convex, the gradient descent can be invoked.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

Bibliography

[1] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In Proceedings of
the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027-1035, Philadelphia,
PA, USA, 2007. Society for Industrial and Applied Mathematics.

[2] Prosenjit Bose, Anil Maheshwari, and Pat Morin. Fast approximations for sums of distances, clustering
and the fermat—weber problem. Comput. Geom. Theory Appl., 24(3):135-146, 2003.

[3] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer
Science, 38:293-306, 1985.

[4] Stuart P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28:129—
137, 1982.

[5] Yehuda Vardi and Cun-Hui Zhang. A modified Weiszfeld algorithm for the Fermat-Weber location
problem. Mathematical Programming, 90(3):559-566, 2001.

