8 Hierarchical Agglomerative Clustering

This marks the beginning of the clustering section. The basic idea is to take a set X of items and somehow
partition X into subsets, so each subset has similar items. Obviously, it would be great if we could be more
specific, but that would end up omitting some particular form of clustering.

Clustering is an extremely broad and ill-defined topic. There are many many variants; we will not try to

cover all of them. Instead we will focus on three broad classes of algorithms, and try to touch on some new
developments.

Shouldn’t we be spending more emphasis on clustering? Perhaps not. Of all of the studies that have
emerged, one theme has rung consistently:

When data is easily cluster-able, most clustering algorithms work quickly and well.
When data is not easily cluster-able, then no algorithm will find good clusters.

8.1 Hard Clustering Formulation

Lets specify our clustering goal a bit more. Start with a set X C M (say M = R%), and a metric d :
MxM— R;.

A cluster S is a subset of X. A clustering is a partition C(X) = {51, 52, ..., S} where

(Cl) each S; C X,
(C2) each pair S; NS; = () (this is relaxed in soft clustering), and
(C3) Ui, S = P.

Then the goal is two-fold:

width: For each S € C(X) for all z,2’ € S then d(x, ) is small.
split: For each S;, S; € C(X), for all (most) x; € S; and z; € S;j (and i # j) then d(x;, x;) is large.

Overall, the goal is for (“split” / “width”) or (“split” - “width”) to be large.
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Figure 8.1: Example of clustering C(X) = {57, S2, S3}.



8.2 Hierarchical/Agglomerative Clustering

The first type of clustering we study is hierarchical. The basic algorithm is:

If two points (clusters) are close (or close enough), put them in the same cluster. Repeat.

A bit more formally, we can write this as an algorithm.

Algorithm 8.2.1 Hierarchical Clustering
Each x; € X is a separate cluster S;.
while Two clusters are close enough do

Find the closest two clusters S;, S
Merge S; and S; into a single cluster

It remains to define close enough and closest. These both basically require a distance between clusters.
There are several options:

e distance between center of clusters. What does center mean?

the mean (average) point.

the center-point (like a high-dimensional median)

center of the MEB (minimum enclosing ball)

some (random) representative point

distance between closest pair of points

distance between furthest pair of points

average distance between all pairs of points in different clusters

radius of minimum enclosing ball of joined cluster
e smallest average distance between points in a cluster and center in the other

Among all clusters, there are often ties. Often break ties arbitrarily, but these choices can dramatically
change the resulting clusters.

Finally we need to define close enough; this indicates some sort of threshold. There are again several
options:

o If information is known about the data, perhaps some absolute value 7 can be given.

e If the { diameter, or radius of MEB, or average distance from center point} is beneath some threshold.
This fixes the scale of a cluster, which could be good or bad.

o If the density is beneath some threshold; where density is # points/volume or # points / radius?

e If the joined (both clusters) density increases too much from single cluster density.
Variations of this are called the “elbow” technique.

e When the number of clusters is k£ (for some magical value k).
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8.2.1 Hierarchy

We can keep track of the order clusters are merged and build a hierarchy of clusterings. This can be useful
structure beyond an opaque single partition of the data. This also means we do not need to (initially) choose
when to stop. We can keep merging until there is only 1 cluster remaining. Then we can choose to “chop
off the top of the tree” later.
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The most famous example of this are phylogenic trees.

8.2.2 Efficiency

Lets use as an example where the distance between clusters is the distance between the centroids, and we
stop when there is one cluster. For n points, this takes about n? time steps.

In each we make one merge, so there are n — 1 = O(n) rounds. In each round with m clusters, we may
need to check (7;) pairs, to find the closest pair. When m < n/2 (which if half of all rounds), then this takes
about n?/4 = O(n?) time each round. It then takes only at most n time to recompute the centroid. So the
total cost is about (n — 1) - n?/4 = O(n?).

We can reduce this to O(n?logn). We maintain a priority queue of the (g”) = O(n?) distances. Each
update takes the closest distance in O(log n) time, but then affects O(n) distances in the queue. These take
O(nlogn) time total to update. Centroids can also be updated in O(1) time (by storing the count and center
point - they can be merged by taking the weighted average). So each round takes O(n logn) time, and the
total process takes O(n?log n) time.

But this is still pretty slow (as we will see compared to other techniques).

8.3 Density-Based Clustering

Density-based clustering can be seen as an efficient extension of hierarchical agglomerative clustering. The
basic premise is that data points which are sufficiently closed should be assigned into the same cluster;
however, at the behest of efficiency, it omits the building of an explicit hierarchy. It also adds a density
requirement.

The most widely used variant is called DBScan. The algorithm has two parameters 7 (a radius, the
literature usually uses €) and 7 (a density parameter, the literature usually uses minPts). Now given a data
set X and adistanced : X x X — R, apoint z € X is designated a core point if at least 7 points from X
are within a distance r from x. That is, x is a core point if [{z’ € X | d(z,2’) < r}| > 7. These points are
all in clusters.

Next we consider a graph G = (X, E), where all data points are edges, and the edge set E has the
following property. An edge e; ; € E between points x;,2; € X if and only if (1) d(x;, ;) < 7 and (2) at
least one of x; or x; is a core point.

Now each connected component of G is a cluster. Recall a connected component involving a point x € X
includes all points 2’ € X that are reachable from x. And a point 2’ is reachable if there is a sequence
xo, 1, ..., T Where zg = z, r;, = 2’ and each consecutive pair xj,rj41 has anedge ej ;11 € E.
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Example. An example data set X of n = 15 points. They are clustered using DBScan using a density
parameters of 7 = 3, and radius r as illustrated in the balls. For instance x4 is a core point, since there 3
points in the highlighted ball of radius r around it. All core points are marked, and the induced graph is
shown.

Note that even though x; and x2 are within a distance r, they are not connected since neither is a core
point. The points with no edges, like x2 and x3, are not in any clusters. And there are two distinct clusters
from the two connected components of the graph: point x5 is in a different cluster than x; and x4, which
are in the same cluster.

Interpretation. So all core points (the points which are in dense enough regions) are in clusters, as well as
any points close enough to those points. And points are connected in the same clusters if they are connected
by a path through dense regions. This allows the clusters to adapt to the shape of the data.

However, there is no automated way to choose the parameters r and 7. This choice will greatly affect
the shape, size, and meaning of the clusters. Also, this model also assumes that the notion of density is
consistent throughout the dataset.

A major advantage of DBScan is that it can usually be computed efficiently. For each x € X we need to
determine if it is a core points, and find neighbors, but these can usually quickly be accomplished with fast
nearest neighbor search algorithms (e.g., LSH in Chapter 4.6). Then usually the connected components (the
clusters) can be recovered without building the entire graph. However, in the worst case, the algorithm will
have runtime quadratic in the n, the size of the data set.
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