6 Jaccard Similarity and Min-Hashing

We will study how to define the distance between sets, specifically with the Jaccard distance. To illustrate
and motivate this study, we will focus on using Jaccard distance to measure the distance between docu-
ments. While modern approaches for understanding and responding to documents typically feed them into
a transformer-based LLM, variants of these approaches are still often used for retrevial tasks.

We start with some big questions. This lecture will only begin to answer them.

e Given two homework assignments (reports) how can a computer detect if one is likely to have been
plagiarized from the other without understanding the content?

e In trying to index webpages, how does Google say a webpage is similar to a keyword. How does
Google avoid listing duplicates or mirrors?

e How does a computer quickly understand emails, for either detecting spam or placing effective adver-
tisers? (If an ad worked on one email, how can we determine which others are similar?)

The key to answering these questions will be convert the data (homeworks, webpages, emails) into an
object in an abstract space that we know how to measure distance, and how to do it efficiently. Instead we
will use a different abstract distance between (unordered) sets.

6.1 Sets and Distances

A set is a (unordered) collection of objects {a, b, c}. We use the notation as elements separated by commas
inside curly brackets { and }. They are unordered so {a,b} = {b,a}.

Although we are interested in a distance, we will actually focus on a dual notion of a similarity. A distance
d(A, B) has the properties:

e it is small if objects A and B are close,
e it is large if they are far,
e itis (usually) O if they are the same, and

e it has value in [0, c0].
On the other hand, a similarity s(A, B) has the properties:

e it is large if the objects A and B are close,
e itis small if they are far,
e itis (usually) 1 if they are the same, and
e itis in the range [0, 1].
Often we can convert between the two as d(A, B) = 1 — s(A, B), however sometimes it is better to use

d(A,B) = \/s(A, A) + s(B, B) — 2s(A, B). Both restrict the distance to be a bounded (non infinite)
domain, that can be converted with a tan map if one desires.

6.1.1 Jaccard Similarity
Consider two sets A = {0,1,2,5,6} and B = {0,2,3,5,7,9}. How similar are A and B?
The Jaccard similarity is defined
_ |ANB|
~ |AuB|
1{0,2,5}] 3

= =S =0.375
{0,1,2,3,5,6,7,9}] 8

More notation, given a set A, the cardinality of A denoted |A| counts how many elements are in A. The
intersection between two sets A and B is denoted A N B and reveals all items which are in both sets. The

union between two sets A and B is denoted A U B and reveals all items which are in either set.
Confirm that JS satisfies the properties of a similarity.

JS(A, B)

Generalized set similarities. To fully generalize set similarities (at least those that are amenable to large-
scale techniques) we introduce a third set operation. The symmetric difference between two sets A and B is
denoted AAB = (AU B) \ (AN B). Note that \ is called ser minus and A \ B is all of the elements in A,
except those also in B. Thus the symmetric difference of A and B describes all elements in A or B, but not
in both.

We now consider the follow class of similarities. We use AU B = [n] \ (A U B), where [n] is a superset
that all sets A and B we consider a subsets from.

z|ANB|+y|AUB| + z|AAB|
r|ANB|+y|[AUB| + 2|AAB|

Now we can define several concrete instances.

Sa:,y,z,z’(Ay B) =

e Jaccard Similarity is defined

- B |AN B _|AnB
IS B) = S100a(A B) = S B AR T AUB|

Hamming Similarity is defined

ANB AUB AAB
Ham(A, B) = S1,1,01(A, B) = 40 i UB| —1— | |
|JANB|+|AUB|+ |AAB| [[n]]
e Andberg Similarity is defined
|AN B |AN B

Andb(A, B) = A B) = - .
ndb(A, B) = Sro02(A B) = e g5 A A Bl ~ AU Bl + [AAB]

Rogers-Tanimoto Similarity is defined

|ANB| +|[AUB |[n]] — |AAB|
RT(A, B) = S1102(A, B) = — = :
(4, B) = 511024, B) |AN B+ [AUB| +2|AAB| [[n]| + [AAB

Sgrensen-Dice Similarity is defined
2|AN B _ 2|AN B
2|AN B|+1|AAB| |A|+|B|

S-Dice(A, B) = S2,0,0,1(A,B) =

For JS, Ham, Andb, and RT, the distance D(A, B) = 1 — S(A, B) is a metric, and these four are amenable
to LSH. We will discuss these topics later. See Chierichetti and Kumar (LSH-Preserving Functions and their
Applications, SODA 2012) for more details.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

6.2 Documents to Sets

How do we apply this set machinery to documents?

Bag of words vs. k-Grams The first option is the bag of words model, where each document is treated as
an unordered set of words.

A more general approach is to shingle the document (or create k-grams). This takes consecutive words
and group them as a single object. A k-gram is a consecutive set of k words. So the set of all 1-grams is
exactly the bag of words model. An alternative name to k-gram is a k-shingle; these mean the same thing.

Di;: I am Sam.

Dsy: Sam I am.

Ds: I do not like green eggs and ham.
Dy: I do not like them, Sam I am.

The (k = 1)-grams of D1UDyUD3sUDyare: {[I], [am], [Sam], [do], [not], [likel,
[green], [eggs], [and], [ham], [them] }

The (k = 2)-grams of D1 UDyUD3UD, 'are: {[T am], [am Sam], [Sam Sam], [Sam I],
[am I], [I do], [do not], [not 1like], [like green], [green eggs], [eggs and],
[and ham], [like them], [them Sam]}.

The set of k-grams of a document with n words is at most n — k. The takes space O(kn) to store them
all. If k is small, this is not a high overhead. Furthermore, the space goes down as items are repeated.

Character level. We can also create k-grams at the character level. The (kK = 3)-character grams of
DyUDyare: {[iam], [ams], [msal, [sam], [amil, [mia]}.

The (k = 4)-character grams of D;UDs are: { [iams], [amsa]l, [msam], [sams], [samil,
[amial, [miam]}.

Modeling choices.

e White space? Should we include spaces, and returns? Sometimes. plane has touch down
versus threw a touchdown.

o Capitalization? Sam versus sam. Can help distinguish proper nouns.

e Punctuation? May be indication of education level, or dialects. For instance English is punctuated
differently in US and India. Punctuation is used differently in new articles (very proper style), blogs
(more informal), and twitter (what is punctuation?).

e Concatenation? Should we concatenate consecutive documents as above, or not let k-grams span
separate documents?

e Characters vs. Words? Long enough grams with characters can simulate words, but will have more
false positives. Can pick up other dialect patterns. But is less interpretable.

o How large should & be? General rule: probability of (almost all) k-grams is low, so a collision is
meaningful.
For word-k-grams: emails £k = 2 or 3 (small documents), research articles £k = 3 or 4 (large docu-
ments), news articles, blog posts (in between).
In English there are 27 characters (26 letters + 1 whitespace). With k = 5 there are 27° ~ 14 millions

"Note here we treat the union of documents as concatenation. e.g. D1UDy = I am Sam. Sam I am. Thisis not always
typical for much larger documents.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

possible k-grams. (Maybe in practice closer to 20° since some letters (e.g. z, g, x are rarely used.)

e Count replicas? Typically bag of words counts replicas, but k-gramming does not.

e Stop words? Words like {a, you, for, the, to, and, that, it, is,

... }arevery

common, and called stop words. Sometimes omit these (typically in bag of words). In shingling can
be effective to say use £k = 3 where the first word must be a stop word: the pizza oven.

There are many variations of these methods. Classic Natural Language Processing (NLP) studied these vari-
ations, but also focused on finding much richer representations of bodies of text. Identifying all nouns
and verbs, and disambiguating words with multiple meanings went to the retreat versus the
troops had to retreat.

6.3 Jaccard with k-Grams
So how do we put this together. Consider the (k = 2)-grams for each Dy, Dy, D3, and Dy:

Dy: [I am], [am Sam]

Dy: [Sam I], [I am]

Ds3: [I do], [do not], [not like],
[eggs and], [and ham]

Dy: [I do], [do not], [not like],

Now the Jaccard similarity is as follows:

[like green],

[like them],

1/3 ~0.333
= 0 =00
- 1/8 =0.125
= 0 =00

2/7 =~ 0.286
= 3/11 ~0.273

[green eggs],

[them Sam], [Sam I],

[I am]

Next time we will see how to use this special abstract structure of sets to compute this distance (approxi-
mately) very efficiently and at extremely large scale.

6.4 Continuous Bag of Words

Sometimes it is useful to obtain statistics for individual words from text corpuses. This will allow us to
compare words in ways we will discuss later in the course. The simplest way is called continuous bag
of words (CBOW). For any instance of a word in a corpus (for instance “like”), it collects in a set (with
multipilicity) all other words used within a distance r of that word. For large corpuses » = 5 has been
suggested. Then a word’s representation is the combination of all of these sets.

Distance between words are then calculated commonly in two ways. The first is Jaccard distance between

the sets.

The second it to represent the set of all possible words as elements of a vector: each coordinate corre-
sponds with a distinct word. Then for the representation of an instance of a word in the CBOW model, we
build a vector vy, initially all Os. Each other word in a neighborhood set has its coordinate in vyorg S€t to
1 (or c if it occurs c times in the neighborhood set). Then the vector representation of that word from the
corpus, is the average of all vectors for each instance of that word. Finally, we can use the cosine distance
(discussed in a later lecture, or just Euclidean distance) to determine the distance between words.

CS 6/5140 / DS 4140 Data Mining

Instructor: Jeff M. Phillips, U. of Utah

Example Consider the text corpus:

I am Sam Sam I am I do not like green eggs and ham I do not like them Sam
I am

Then using the example word “like” and the parameter » = 2, the representation of the first and second
instances are:

v = (0,0,0,1,1,0,1,1,0,0,0)
vie = (0,0,1,1,1,0,0,0,0,0,1)

where the each coordinate is associated with the following words
(I,am, Sam,do,not, like,green, eggs, and, ham, them).

In reality, the above vectors are much longer, with the many other words used in English.
The average of the two vectors is then:

(Ve + Vo) /2 = Vike = (0,0,0.5,1,1,0,0.5,0.5,0,0,0.5)

Note that the other words do and not occur commonly with 1ike.

6.5 Locality Sensitive Hashing

Now we face the challenge of if we have many many documents (say n documents) and we want to find the
ones that are close. But we don’t want to calculate (g) ~ n?/2 distances to determine which ones are really
similar.

In particular, consider we have n = 1,000,000 items and we want to ask two questions:

(Q1): Which items are similar?

(Q2): Given a query item, which others are similar to the query?

For (Q1) we don’t want to check all roughly n? distance (no matter how fast each computation is), and for
(Q2) we don’t want to check all n items. In both cases we somehow want to figure out which ones might be
close and the check those.

As an alternative to decomposition-based nearest neighbor searching, or HNSW, we will develop a tech-
nique called Locality Sensitive Hashing (or LSH). Moreover, this approach works directly for when the
abstract representation is sets.

6.5.1 Properties of Locality Sensitive Hashing

We start with the goal of constructing a locality-preserving hash function h with the following properties
(think of a random grid over spatial data). Do not confuse this with a (random) hash function discussed in
L2. The locality needs to be with respect to a distance function d(-,-). In particular, if & is (v, ¢, «, B)-
sensitive with respect to d then it has the following properties:

e Prih(a) = h(b)] > aifd(a,b) < v
o Prih(a) = h(b)] < Bifd(a,b) > ¢

For this to make sense we need o > 3 for v < ¢. Ideally we want o — 3 to be large and ¢ — y to be small.
Then we can repeat this with more random hash functions to amplify the effect, according to a Chernoff-
Hoeffding bound. This will effectively make oo — 3 larger for any fixed ¢ — -y gap, and will work for all such
¢ — v simultaneously.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

6.6 Minhashing as LSH

Minhashing is an instance of LSH (and perhaps the first such realized instance). We will have ¢ hash

functions {hy, ha, ..., hy} where each h; : 2© — [n] is chosen at random from a family.
Documents: H Dy Dy D3 Dy ... D, H
hi 12 4 0 ... 1
ho 2 0 1 3 ... 2
hs 5 3 3 0 ... 1
hy 1 2 3 0o ... 1

It will satisfy
JSt(Dl,DQ) = E[(l/t) . (#I”OWS hz(Dl) = hz(Dg))}
and in general JS(a, b) = Pr[h(a) = h(b)].
Then for some similarity threshold 1 — JS(a,b) = d(a,b) = 7 we can set 7 = v = ¢ and the have
a=1—7and B =r1.
This scheme will work for any similarity such that s(a,b) = Prh(a) = h(b)].

6.6.1 Minhashing’s Hash Fucntion

We next describe how we construct the hash functions /; in MinHashing. We start with a random hash
function h'; € H that maps from €2 (the domain of the sets) to a large space [n/] (for n’ > |©2|%). For each Ly
we initialize a value v; = oo and make one pass over the set S to build the hash h;.

Algorithm 6.6.1 Min Hash: h;(.5)
for: € Sdo
if (h;(i) < v;) then
Vj h; (Z)
return 1;(S) = v,

It is better to implement so we run k£ hash functions over one set S simultaneously as follows to get a
vector v = (v, 2, . ..,v;) € RF asvj = h;(S) for {h1, ha,..., hy} € H.

Algorithm 6.6.2 Fast Min Hash: v = H(S)
fori € S do
for j =1to k do
if (h;(i) < v;) then
Vj — h; (’L)
return v = (vy,v2, ..., Ug).

The algorithm runs in |S|k steps, for a set S of size |S|. Note this is independent of the size n of all
possible elements €. And the output space of a single set needs only be & = (1/2¢2)In(2/) (see discussion
below) which is independent of the size of the original set. The space for N sets is only O(Nk).

Finally, we can now estimate JS(.S, S”) for two sets S and S’ as

k

> 1(hy(S) = hy(S))

j=1

JSi(S, S') =

=

where 1(y) = 1 if v = TRUE and 0 otherwise. This only takes O(k) time, again independent of n or |S]|
and |5'].

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

6.7 Slow Min Hashing and Analysis

We will now describe a permutation perspective on min hashing (this is not how you would implement it,
but makes the analysis of why it works more clear).

Step 1: Randomly permute the items (by permuting the rows of the matrix).

Element | S1 Sy S3 Sy

2 1 0 1 0
) 1 0 0 O
6 0 0 1 1
1 1 0 0 1
4 0 0 1 1
3 0 1 1 0O

Step 2: Record the first 1 in each column, using a map function m. That is, given a permutation, applied to a
set S, the function m(.S) records the element from S which appears earliest in this permutation.

m(Sy) =2
m(S2) =3
m(S3) =2
m(Ss) =6

Step 3: Estimate the Jaccard similarity JS(S;, S;) as

L m(Si) = m(S))
0 otherwise.

JS(S;, S;) = {

Lemma 6.7.1. Pr[m(SZ) = m(S])} = E[JS(S“ S])] = JS(Si, Sj)
Proof. There are three types of rows.

(Tx) There are x rows with 1 in both column
(Ty) There are y rows with 1 in one column and 0O in the other
(Tz) There are z rows with 0 in both column

The total number of rows is « + y + z. The Jaccard similarity is precisely JS(.S;, S;) = z/(x + y). (Note
that usually 2z > x, y (mostly empty) and we can ignore these.)

Let row r be the min{m(S;), m(S;)}. Itis either type (Tx) or (Ty), and it is (Tx) with probability exactly
x/(z + y), since the permutation is random. This is the only case that m(.S;) = m(S;), otherwise S; or S}
has 1, but not both. O

Thus this approach only gives 0 or 1, but has the right expectation. To get a better estimate, we need
to repeat this several (k) times. Consider k£ random permutations {mi,mo, ..., my} and also k random
variables { X1, Xo, ..., X} where

1 if mz(SZ) = mg(Sj)
Xy =)
0 otherwise.

Now we can estimate JS(S;, S;) as JSi(S;, S;) = % Z§=1 Xy, the average of the k simple random esti-
mates.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

So how large should we set % so that this gives us an accurate measure? Since it is a randomized
algorithm, we will have an error tolerance ¢ € (0,1) (e.g. we want [JS(S;, S;) — JSk(Si, S;)| <), and
a probability of failure ¢ (e.g. the probability we have more than ¢ error). We will now use Theorem 2.5.2
(L2) where M = Zif:l Xy and hence E[M] = k - JS(S;, S;). We have 0 < X; < 1soeach A; = 1. Now
we can write for some value o

Pr[|JSk(Si, S;) — JS(S;, S;)| > a/k] = Pr[|k - JSk(Si, S;) — k - JS(S;, S;)| > «
202

= Pr[[M — E[M]| = af < 2exp (M

) = 2exp(—202/k).

Setting o = ¢k and k = (1/(2¢2)) In(2/8) we obtain
Pr{|JSk(S;, S;) — IS(S;, S;)| > €] < 2exp(—2(*k?)/k) = 26xp(—2522—i2 In(2/6)) = 6.

Or in other words, if we set k = (1/22) In(2/5), then the probability that our estimate JS(.S;, S;) is within
e of JS(S;, S;) is at least 1 — 4.

Say for instance we want error at most € = 0.05 and can tolerate a failure 1% of the time (6 = 0.01), then
we need k = (1/(2-0.05%))1In(2/0.01) = 2001n(200) ~ 1060. Note that the modeling error of converting
a structure into a set may be more than £ = 0.05, so this should be an acceptable loss in accuracy.

Top k. It is sometimes more efficient to use the top-k (for some small number k£ > 1) hash values for
each hash function, than just the top one. For instance, see Cohen and Kaplan (Summarizing Data using
Bottom-k Sketches, PODC 2007). This approach requires a bit more intricate analysis, as well as a bit more
careful implementation.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

