
17 Metric Learning

Many algorithms, and much intuition, in Data Mining start from the following set-up:

Let X ⊂ Rd be a set of n points, consider Euclidean distance d(x, x′) = ‖x− x′‖.

In reality the data encountered is much messier, and this assumption does not always hold. Consider a set
of people recorded as (height,weight,age). How do we measure distance between such objects?

This lecture will cover three specific scenarios.

• Mutlidimensional Scaling where we are given a distance d, but it is not Euclidean. Points may not
even by in Rd.

• Linear Discriminant Analysis where X ⊂ Rd, but we do not trust Euclidean distance. But we are
given cluster labels.

• Linear Distance Metric Learning where X ⊂ Rd, and we do not trust Euclidean distance. In this
setting we are given pairs of close points, and pairs of far points.

In each case, the output will be a mapping of µ : X → Rk where we can use Euclidean distance on the
resulting points. We may even be able to choose k = 2, and nicely visualize the data.

17.1 Multidimensional Scaling
Dimensionality reduction is an abstract problem with input of a high-dimensional data set P ⊂ Rd and a
goal of finding a corresponding lower dimensional data set Q ⊂ Rk, where k << d, and properties of P
are preserved in Q. Both low-rank approximations through direct SVD and through PCA are examples of
this: Q = πVk(P). However, these techniques require an explicit representation of P to start with. In some
cases, we are only presented P more abstractly. There two common situations:

• We are provided a set of n objects X , and a bivariate function d : X ×X → R that returns a distance
between them. For instance, we can put two cities into an airline website, and it may return a dollar
amount for the cheapest flight between those two cities. This dollar amount is our “distance.”

• We are simply provided a matrix D ∈ Rn×n, where each entry Di,j is the distance between the ith
and jth point. In the first scenario, we can calculate such a matrix D.

Multi-Dimensional Scaling (MDS) has the goal of taking such a distance matrixD for n points and giving
low-dimensional (typically) Euclidean coordinates to these points so that the embedded points have similar
spatial relations to that described in D. If we had some original data set A which resulted in D, we could
just apply PCA to find the embedding. It is important to note, in the setting of MDS we are typically just
given D, and not the original data A. However, as we will show next, we can derive a matrix that will act
like AAT using only D.

A similarity matrix M is an n × n matrix where entry Mi,j is the similarity between the ith and the jth
data point. The similarity often associated with Euclidean distance ‖ai − aj‖ is the standard inner (or dot
product) 〈ai, aj〉. We can write

‖ai − aj‖2 = ‖ai‖2 + ‖aj‖2 − 2〈ai, aj〉,

1

and hence

〈ai, aj〉 =
1

2

(
‖ai‖2 + ‖aj‖2 − ‖ai − aj‖2

)
. (17.1)

Next we observe that for the n× n matrix AAT the entry [AAT]i,j = 〈ai, aj〉. So it seems hopeful we can
derive AAT from D using equation (17.1). That is we can set ‖ai − aj‖2 = D2

i,j . However, we need also
need values for ‖ai‖2 and ‖aj‖2.

Since the embedding has an arbitrary shift to it (if we add a shift vector s to all embedding points,
then no distances change), then we can arbitrarily choose a1 to be at the origin. Then ‖a1‖2 = 0 and
‖aj‖2 = ‖a1 − aj‖2 = D2

1,j . Using this assumption and equation (17.1), we can then derive the similarity
matrix AAT . Then we can run the eigen-decomposition on AAT and use the coordinates of each point
along the first k eigenvectors to get an embedding. Taking the average of this procedure over all choices of
‖aj‖2 = 0 is known as classical MDS.

Classical MDS. First we need to (re)define the centering matrix Cn = I − 1
n11

T from PCA. Given a
point set X ⊂ Rn×d, applying A = CnX centers X so that the mean (column-wise mean) of A is 0 in each
coordinate. Recall this is the first step in PCA before calling the SVD to get the principal components and
values. Its commonly written this way to encode it in linear algebra.

Now Classical MDS applies it on both sides of D(2) which squares all entries of D so that D(2)
i,j = D2

i,j .
This double centering process creates a matrix M = −1

2CnD
(2)Cn. Then the embedding uses the top k

eigenvectors of M and scales them appropriately by the square-root of the eigenvalues. That is let V ΛV =
M be its eigendecomposition. The let Vk and Λk represent the top k eigenvectors and values respectively.
The final point set is VkΛ

1/2
k = Q ∈ Rn×k. So the n rows q1, . . . , qn ∈ Rk are the embeddings of points to

represent distance matrix D. This algorithm is sketched in Algorithm 17.1.1

Algorithm 17.1.1 Classical Multidimensional Scaling: CMDS(D, k)

Set M = −1
2CnD

(2)Cn # double centering
Construct [Λ, V] = eig(M) # the eigendecomposition of M
return Q = VkΛ

1/2
k # projection to best k-dimensions

It is often used for k as 2 or 3 so the data can be easily visualized.
There are several other forms that try to preserve the distance more directly, whereas this approach is

essentially just minimizing the squared residuals of the projection from some unknown original (high-
dimensional embedding). One can see that we recover the distances with no error if we use all n eigenvectors
– if they exist. However, as mentioned, there may be less than n eigenvectors, or they may be associated
with complex eigenvalues. So if our goal is an embedding into k = 3 or k = 10, there is no guarantee that
this will work, or even what guarantees this will have. But MDS is used a lot nonetheless.

17.2 Linear Discriminant Analysis
Another tool that can be used to learn Euclidian distance for data is a Linear Discriminant Analysis (or
LDA, or sometimes Fisher Discriminant Analysis). This term has a few variants, we focus on the multi-
class setting. This means we begin with a data set X ⊂ Rd, these has a known a partition of X into k
classes (or clusters) S1, S2, . . . , Sk ⊂ X , so

⋃
Si = X and Si ∩ Sj = ∅ for i 6= j.

Let µi = 1
|Si|
∑

x∈Si
x be the mean of class i, and let Σi = 1

|Si|
∑

x∈Si
(x−µi)(x−µi)T be its covariance.

Similarly, we can represent the overall mean as µ = 1
|X|
∑

x∈X x. Then we can then represent the between

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

class covariance as

ΣB =
1

|X|

k∑
i=1

|Si|(µi − µ)(µi − µ)T .

In contrast the overall within class covariance is

ΣW =
1

|X|

k∑
i=1

|Si|Σi =
1

|X|

k∑
i=1

∑
x∈Si

(x− µi)(x− µi)T .

The goal of LDA is a representation of X in a k′-dimensional space that maximizes the between class
covariance while minimizing the within class covariance. This often formalized as finding the set of vectors
u which maximize

uTΣBu

uTΣWu
.

For any k′ ≤ k − 1, we can directly find the orthogonal basis U = {u1, u2, . . . , uk′} that maximizes the
above goal with an eigen-decomposition. In particular, U is the top k′ eigenvectors of Σ−1W ΣB . Then to
obtain the best representation of X we set the new data set as

X̃ ← π̄U (X)

so x̃ = π̄U (x) = (〈x, u1〉, 〈x, u2〉, . . . , 〈x, uk′〉) ∈ Rk′ .
This retains the dimensions which show difference between the classes, and similarity among the classes.

The removed dimensions will tend to show variance within classes without adding much difference between
the classes. Conceptually, if the data set can be well-clustered under the k-means clustering formulation,
then the U (say when rank k′ = k − 1) describes a subspace with should pass through the k centers
{µ1, µ2, . . . , µk); capturing the essential information needed to separate the centers.

17.3 Distance Metric Learning
The first approach MDS required that all distances were known ahead of time, and then a low-dimensional
Euclidean embedding can be generated. The second approach LDA requires that the data X is somehow
clustered or labeled into k classes before the analysis starts. In many settings these assumptions may be
unrealistic.

However, if we are to choose a good metric, we must know something about which points should be close
and which should be far. In the distance metric learning problem we assume that we have two sets of pairs;
the close pairs C ⊂ X ×X and the far pairs F ⊂ X ×X . This process starts with a dataset X ⊂ Rd, and
close and far pairs C and F and tries to find a metric so the close pairs are as small as possible, while the far
pairs are as large as possible.

In particular, we restrict to a Mahalanobis distance defined with respect to a positive semidefinite matrix
M ∈ Rd×d on points p, q ∈ Rd as

dM (p, q) =
√

(p− q)TM(p− q).

So given X and sets of pairs C and F , the goal is to find M to make the close point have small dM distance,
and far points have large dM distance. There are many ways to formulate this, and different formulations
come with different algorithms.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

LDA Analog

Lets start with a simple analog to LDA (for which I have not see explanation of why it works or what it
explicitly optimizes). Let C have nC pairs which we would like to be close. And let F have nF pairs we
would like to be far. Then for some small parameter α > 0, define a d× d matrix

M =

αI +
1

nC

∑
{xi,x′i}∈C

(xi − x′i)(xi − x′i)T −
1

nF

∑
{xj ,x′j}∈F

(xj − x′j)(xj − x′j)T
−1 .

This directly defines a Mahalanobis distance dM (p, q) =
√

(p− q)TM(p− q) that tries to push close pairs
together and pull far pairs apart. We can even set Mk = VkΛkV

T
k where [Λ, V] = eig(M) and Λk, Vk

represents the top-k eigenvectors and values. Then we implicitly get a low dimensional metric.
Alterantively, we can pre-process X so that it lies in Rk and the distances is Euclidean. To do that

decompose Mk = ATA where A = Λ
1/2
k Vk and Vk = Rk×d. Now transform as

qi = Axi for all xi ∈ X

This induces that

‖qi − qj‖ =
√

(Axi −Axj)T (Axi −Axj)

=
√

(xi − xj)TATA(xi − xj)

=
√

(xi − xj)TMk(xi − xj)

= dMk
(xi, xj).

Eig-DML

In this set-up we will consider finding the optimal distance dM∗ as

M∗ = max
M

min
{xi,xj}∈F

dM (xi, xj)
2

such that
∑

{xi,xj}∈C

dM (xi, xj)
2 ≤ κ.

That is we want to maximizes the closest pair in the far set F , while restricting that all pairs in the close set
C have their sum of squared distances are at most κ, some constant. We will not explicitly set κ, but rather
restrict M in some way so on average it does not cause much stretch. There are other reasonable similar
formulations, but this one will allow for simple optimization (following Ying+Li in JMLR12).

The standard approaches in the literature set up an optimization procedure and then run a “solver” to find
the best M . We will instead describe an approach which is a bit less opaque.

Notational Setup. Let H =
∑
{xi,xj}∈C(xi− xj)(xi− xj)T ; note that this is a sum of outer products, so

H is in Rd×d. For this to work we will need to assume that H is full rank; otherwise we don’t have enough
close pairs to measure. Or we can set H = H + δI for a small scalar δ.

Further, we can restrict M to have trace Tr(M) = d, and hence satisfying some constraint on the close
points. Recall that the trace of a matrix M is the sum of M ’s eigenvalues. Let P be the set of all positive
semidefinite matrices with trace d; hence the identity matrix I is in P. Also, let

4 = {α ∈ R|F | |
∑

αi = 1 & all αi ≥ 0}.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

Let τi,j ∈ F (or simply τ ∈ F when the indexes are not necessary) to represent a far pair {xi, xj}. And
let Xτi,j = Xi,j = (xi − xj)(xi − xj)T ∈ Rd×d, an outer product. Let X̃τ = H−1/2XτH

−1/2. It turns out
our optimization goal is now equivalent (up to scaling factors, depending on κ) to finding

arg max
M∈P

min
α∈4

∑
τ∈F

ατ 〈X̃τ ,M〉.

Here 〈X,M〉 =
∑

s,tXs,tMs,t, a dot product over matrices, but because since X will be related to an outer
product between two data points, this makes sense to think of as dM (X).

Optimization procedure. Given the formulation above, we will basically try to find anM which stretches
the far points as much as possible while keeping M ∈ P. We do so using a general procedure referred to
as Frank-Wolfe optimization, which increases our solution using one data point (in this case a far pair) at a
time.

Set σ = d · 10−5 as a small smoothing parameter. Define a gradient as

gσ(M) =

∑
τ∈F exp(−〈X̃τ ,M〉/σ)X̃τ∑
τ∈F exp(−〈X̃τ ,M〉/σ)

.

Observe this is a weighted average over the X̃τ matrices. Let vσ,M be the maximal eigenvector of gσ(M);
the direction of maximal gradient.

Then the algorithm is simple. Initialize M0 ∈ P arbitrarily; for instance as M0 = I . Then repeatedly
find for t = 1, 2, . . . as (1) find vt = vµ,Mt−1 , and (2) set Mt = t−1

t Mt−1 + 1
t vtv

T
t . This is summarized in

Algorithm 17.3.1.

Algorithm 17.3.1 Optimization for DML
Initialize M0 = I .
for t = 1, 2, . . . , T do

Set G = gσ(Mt−1)
Let vt = vσ,Mt−1 ; the maximal eigenvalue of G.
Update Mt = t−1

t Mt−1 + 1
t vtv

T
t .

return M = MT .

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

