
10 Spectral Clustering

Another perspective on clustering is that there are three main types: (1) Bottom-Up, (2) Assignment-Based,
and (3) Top-Down. The bottom-up variety was like the hierarchical agglomerative clustering where we start
with very small clusters and build bigger clusters. The assignment based clustering was like the k-center or
the k-means variety were we “assign” each object to a center. Given the centers, there is no need to build
or carve the clusters. The third type, top-down clustering, is what we will be discussing here. It starts from
one big cluster and gradually divides the big clusters into smaller and smaller clusters.

At a high level the idea of top down clustering can be described very easily.

• Find the best cut of the data into two pieces.

• Recur on both pieces until that data should not be split anymore.

What remains is to determine the best way to split a set into two pieces. Then finding a threshold has similar
options as with Hierarchical clustering.

Also we will need to discuss graphs, and perform clustering on graphs.

10.1 Graphs
A graph is an abstract data type that may seem very natural once you are familiar with and used to it. But if
it is new, it may take a while to sink in. We will revisit them many times in the class.

A graph G = (V,E) is defined by a set of vertices V = {v1, v2, . . . , vn} and a set of edges E =
{e1, e2, . . . , em} where each edge ej is an unordered (or ordered in a directed graph) pair of edges: ej =
{vi, vi′}.

Two vertices v1 and vk are connected if there is a sequence of edges 〈e1, . . . , ek−1〉 such that e1 contains
v1, ek−1 contains vk, and each consecutive edges can be ordered so ej = {vi, vi+1} and ej+1 = {vi+1, vi+2}
where the second element in ej is the same as the first in ej+1.

Consider an example graph portrayed three ways.

Mathematically: G = (V,E) where

V = {a, b, c, d, e, f, g} and

E =
{
{a, b}, {a, c}, {a, d}, {b, d}, {c, d}, {c, e}, {e, f}, {e, g}, {f, g}, {f, h}

}
.

Matrix-Style: As a matrix with 1 if there is an edge, and 0 otherwise. (For a directed graph, it may not be
symmetric).

G =

a b c d e f g h

a 0 1 1 1 0 0 0 0
b 1 0 0 1 0 0 0 0
c 1 0 0 1 1 0 0 0
d 1 1 1 0 0 0 0 0
e 0 0 1 0 0 1 1 0
f 0 0 0 0 1 0 1 1
g 0 0 0 0 1 1 0 0
h 0 0 0 0 0 1 0 0

=



0 1 1 1 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0
1 1 1 0 0 0 0 0
0 0 1 0 0 1 1 0
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0



1



Pictorially: A ball stick model of a graph.

a

b

c

d

e

f

g

h

10.2 Clustering on Graphs
So how to cluster a graph? A cluster is a subset S ⊂ V . We are performing top down clustering, so we only
need to consider a subset S and its compliment S̄ = V \ S.

In general, we want many edges within a cluster (small width), and few edges between clusters (large
split).

• The volume of a cluster is Vol(S) = the number of edges with at least one vertex in V .
• The cut between two clusters S, T is Cut(S, T ) = the number of edges with one vertex in S and the

other in T .

Then we want a large Vol(S) for each cluster and a small Cut(S, T ) for each pair of clusters.
Specifically, the normalized cut between S and T is NCut(S, T ) = Cut(S,T )

Vol(S) + Cut(S,T )
Vol(T ) . And we want to

find the cluster S (and compliment T = V \ S) that has the minimum NCut(S, T ). Dividing by Vol(S) and
Vol(T ) prevents us from finding either S or T that is too small, and the Cut(S, T ) on top will force a large
split.

For instance, in the above example, the minimum normalized cut is S = {a, b, c, d}, but the cluster
with S′ = {h} has just as small Cut(S′, T ′) value. But its normalized cut is 1 + 1

10 = 1.1, where as
NCut(S, T ) = 1

6 + 1
5 = 0.367.

10.2.1 Graphs stored in Matrices
Start with an adjacency matrix

A =



0 1 1 1 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0
1 1 1 0 0 0 0 0
0 0 1 0 0 1 1 0
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0


and the degree matrix, which along the diagonal stores the degree of each vertex. The degree of a vertex is
the number of edges that contain that vertex.

D =



3 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 1


.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah



10.2.2 (Unnormalized) Laplacian

In some contexts it will be suitable to use the (regular, unnormalized) Laplacian defined:

L0 = D −A =



3 −1 −1 −1 0 0 0 0
−1 2 0 −1 0 0 0 0
−1 0 3 −1 −1 0 0 0
−1 −1 −1 3 0 0 0 0
0 0 −1 0 3 −1 −1 0
0 0 0 0 −1 3 −1 −1
0 0 0 0 −1 −1 2 0
0 0 0 0 0 −1 0 1


.

Note that the entries in each row and column of L0 sum up to 0.

• think of D as the flow into a vertex, and

• think of A as the flow out of the vertex.

The water keeps flowing, so it does not get stuck anywhere. That is, as much flows in as flows out.

The eigenvector of a matrix M is the the vector v such that

Mv = λv,

where λ is a scalar. Then λ is the corresponding eigenvalue. We usually restrict that ‖v‖ = 1.

There are (typically) several eigenvectors of L0 (the Laplacian). We list them here sorted by λ.

λ 0 0.278 1.11 2.31 3.46 4 4.82

V 1/
√

8 −.36 0.08 0.10 0.28 0.25 1/
√

2

1/
√

8 −.42 0.18 0.64 −.38 0.25 0

1/
√

8 −.20 −.11 0.61 0.03 −.25 0

1/
√

8 −.36 0.08 0.10 0.28 0.25 −1/
√

2

1/
√

8 0.17 −.37 0.21 −.54 −.25 0

1/
√

8 0.36 −.08 −.10 −.28 0.75 0

1/
√

8 0.31 −.51 −.36 −.56 0.56 0

1/
√

8 0.50 0.73 0.08 0.11 0.11 0

This can be calculated easily in matlab using the [V ,Λ] = eig(L) command.

And here is the drawing of the vertices according to v2 and v3, scaled by 1/
√
λi along each axis. Again

the drawing below points a and d are directly on top of each other. From the perspective of the graph, they
are indistinguishable. The eigenstructure does not separate them until v7.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah



a
b

c
d

e

f

g

h

v3 = 1

v3 = �1

v2 = �1 v2 = 1

10.2.3 Top-Down Spectral Clustering
The second eigenvector of the normalized Laplacian, called the Fielder vector, is a very important descriptor
of a graph. In the example it is v2 = (−.36,−.42,−.20,−.36, 0.17, 0.36, 0.31, 0.50) as read off the second
column of the above chart.

• It tells us how to best cut the graph.
• It tells us how “best” to put all of the vertices on a single line
• We can set S = {vi ∈ V | u2(vi) < 0} and T = V \ S.

Then S = {a, b, c, d} and T = {e, f, g, h}.
• Can sometimes do better by checking all possible cuts along v2 (use any threshold, not only 0). Take

one with best NCut(S, T ).

The third eigenvector can be useful too. It can be used (with the second eigenvector) to lay out the vertices
in R2, and can then be used to make a 4-way cut.

[+ + ] S = {h} defined as v2 > 0 and v3 > 0

[+ – ] T = {e, f, g} defined as v2 > 0 and v3 < 0

[– + ] U = {a, b, d} defined as v2 < 0 and v3 > 0

[– – ] R = {c} defined as v2 < 0 and v3 > 0.

10.2.4 Normalized Laplacian
Before we proceed we will want to use the matrix D−1/2; for a diagonal matrix, a power p just takes every
element di,i on the diagonal to that power dpi,i. So

D−1/2 =



0.577 0 0 0 0 0 0 0
0 0.707 0 0 0 0 0 0
0 0 0.577 0 0 0 0 0
0 0 0 0.577 0 0 0 0
0 0 0 0 0.577 0 0 0
0 0 0 0 0 0.577 0 0
0 0 0 0 0 0 0.707 0
0 0 0 0 0 0 0 1


.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah



Then the normalized Laplacian matrix is now the product of D−1/2 and A

L = I−D−1/2AD−1/2 =



1 −0.408 −0.333 −0.333 0 0 0 0
−0.408 1 0 −0.408 0 0 0 0
−0.333 0 1 −0.333 −0.333 0 0 0
−0.333 −0.408 −0.333 1 0 0 0 0

0 0 −0.333 0 1 −0.333 −0.408 0
0 0 0 0 −0.333 1 −0.408 −0.577
0 0 0 0 −0.408 −0.408 1 0
0 0 0 0 0 −0.577 0 1


.

We can also convert L0 to the normalized Laplacian L using the D−1/2 matrix as

L = I −D−1/2AD−1/2 = D−1/2L0D
−1/2.

The left- and right-multiplication by D−1/2 can be thought of as normalizing by the degrees. That is each
entry Pi,j of P = D−1/2AD−1/2 (and edge (i, j)) is normalized by the amount of flow in and out of the
nodes vi and vj of its corresponding edge (i, j).

The normalized Laplacian is almost always preferred to the (unnormalized) Laplacian for spectral. This
is because the second eigenvalue corresponds to a relaxed solution to the Normalized Cut problem. The cut
requires a binary choice, but for an appropriately phrased optimization problem where the normalized cut
is the optimal binary solution, the second eigenvalue of the normalized Laplacian is the optimal solution
allowing for continuous values.

There are (typically) several eigenvectors of L (the normalized Laplacian): We list them here sorted by λ.

λ 0 0.125 0.724 1.00 1.33 1.42 1.66 1.73

V −.39 0.38 −.09 0.00 0.71 0.26 −.32 0.16
−.32 0.36 −.27 0.50 0.00 −.51 0.38 −.18
−.39 0.18 0.36 −.61 0.00 0.03 0.47 −.29
−.39 0.38 −.09 0.00 −.71 0.26 −.32 0.16
−.39 −.28 0.48 0.00 0.00 −.57 0.31 0.33
−.39 −.48 −.29 0.00 0.00 0.05 −.31 −.65
−.31 −.36 0.27 0.50 0.00 0.51 0.38 −.18
−.22 −.32 −.61 −.35 0.00 −.07 0.27 0.51

The first eigenvalue of the Laplacian is always 0, up to numerical error.
When drawing the graph using v2 and v3 its good to scale the values by 1/

√
λi along each axis. Note that

in the drawing below points a and d are directly on top of each other. From the perspective of the graph,
they are indistinguishable. The eigenstructure does not separate them until v5.

a
b

c

d

e

f

g

h

v3 = 1

v3 = �1

v2 = �1 v2 = 1

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah



Alternatively, we can use the first d eigenvectors (scaled by eigenvalues) to embed the vertices in Rd.
Then we can use any Euclidean clustering algorithm (such as Lloyds for k-means clustering). The smaller
the eigenvector, the more important the direction. So the larger the index of the eigenvalue, the smaller the
1/
√
λi will be. So the top 5 or so (depending on data) may be all required. Notice here how the second

eigenvector provides much better separation than the third one.

Affinity matrix. More generally, the adjacency matrix need not be 0−1. It can be filled with the similarity
value defined by some similarity function s : X × X → [0, 1] between elements of the data set X; then
A stands for affinity. The diagonal is still diagonal, but is now defined as the sum of elements in a row (or
column — it must be symmetric). Then spectral clustering can be run as before. When the similarity of a
pair is very small, it is a good heuristic to round the values down to 0 in the matrix to make the algorithm
run faster.

This embedding into R2 is a form of non-linear dimensionality reduction. This is popular to use where
we set s(a, b) = exp(−‖a− b‖2/σ2) applied to data in Rd where σ is a scaling parameter that describes in
Euclidean distance what is close; and beyond which (say> 2σ) is far. Applying this with the (unnormalized)
Laplacian is called Laplacian Eigenmaps.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah


