
10 Distances for Distributions

So far we have mostly talked about distances (and similarities) between two abstract data types: sets (e.g.,
Jaccard) and vectors (e.g., Lp, cosine). However there is one additional and commonly considered class of
abstract representations that is becoming increasing important: probability distributions.

One source of these representations is from the fact that we use randomized algorithms within data mining,
or we assume that data is drawn iid from some unknown distribution. In this sense, while there may be an
underlying continuous probability distribution representing things, we often have access through repeated
trials or observations, and so the representation is a set of observations. What makes this different from set
distances is that those do not somehow account for either the probabilistic nature of things, or the geometric
notions where each observation is encoded as a vector. How do we compare these probabilistic outputs?

The second source, is in learned representations of objects in a data set. For instance, word vector embed-
dings take say n = 100,000 objects and embed each in say d = 300 dimensions. The words are embedded
each as a vector, and the distance between vectors is important. How do we compare such distributions to
each other (e.g., embeddings of words from different languages)?

We have already seen a couple distances, lets revisit them:

10.0.1 Warm Up 1: Discrete distributions
In some cases, we can define a finite collections of states an object can take. For instance, if we assume there
are m = 100,000 words in the English languages. Or there are m = 29 counties in Utah, so each event in
Utah (e.g., a vote or a lightening strike), occurs in one of those regions. We can then store our observations
of events as counts in an m-dimensional vector v ∈ Rm. If there are n events, we transform this into a
discrete probability distribution by L1-normalizing, that is we divide each entry v(j) by n (the number of
observations), this results in a vector v′.

What space does v′ lie in? Its more restrictive than Rm, but it is not quite Sm−1 (the (m−1)-dimensional
hypersphere, the results of L2-normalizing. We label this space

4m−1 = {x ∈ Rm | xi > 0 and ‖x‖1 = 1}.

This spaces is sometimes called the (m− 1)-simplex, and defines a higher-dimensional equilateral triangle
(e.g.,43 is a tetrahedron). It is the convex hull of the vectors {e1 = (1, 0, 0, 0, . . .), e2 = (0, 1, 0, 0, 0, . . .), e3 =
(0, 0, 1, 0, 0, . . .), . . . , em = (0, 0, 0, . . . , 0, 1)}. And as a result, unlike Sm−1, it is a linear space, and
straight Euclidean line segments between two elements are contained within the space. As a results, in some
sense for v′, u′ ∈ 4m then dEuc(v

′, u′) = ‖v′ − u′‖ makes sense.
Another common distance is the Kullback-Leibler Divergence defined for a, b ∈ 4m−1 as:

dKL(a, b) =
m∑
j=1

aj ln(aj/bj)

It can be derived from information theory, and is given the understanding of a distribution a, how much
information is needed to convey (relative to a) to describe a distribution b. Note that this is not a metric,
since it is not symmetric. That is we do not always (and usually do not) have dKL(a, b) = dKL(b, a).

Another common one is the Hellinger distance defined for a, b ∈ 4m−1 as:

dH(a, b) =
1√
2

√√√√ d∑
j=1

(
√
aj −

√
bj)2.
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It is a metric 4m−1. It can be interpreted as “lifting” to a wedge of Sm−1 and then using the Euclidean
distance among those representations.

Or the Total Variation Distance defined for a, b ∈ 4m−1 is

dTV(a, b) = max
S⊂[m]

∑
j∈S

(aj − bj) =
1

2
‖a− b‖1

It inherits the metric properties from L1, and is in many senses the most sensitive metric on distributions.

10.0.2 Warm Up 2: Kolmogorov-Smirnov in 1 Dimension
The discrete distribution measures restrict comparisons to, well, discrete sets. What if the distribution is
inherently continuous, like completion time, rainfall, or height? These have two complications: First, it
could be no two observations among distributions µ and ν are at the exact same value (so dTV(µ, ν) is
always 1). Second, these formulations lose the information that 1.0012 inches of rain is very similar to
1.0014 inches of rain.

The Kolmogorov-Smirnov distance provides an elegant and powerful approach for this for distributions
over R (so 1 dimension).

Recall the cumulative density function (CDF) of a distribution µ is defined

CDFµ(z) =

∫ z

y=−∞
µ(z)dy

and its range is always in [0, 1] for a probability distribution µ.
Then the Kolmogorov-Smirnov (KS) distance is defined for two probability distributions µ, ν defined over

R as
dKS(µ, ν) = max

z∈R
|CDFµ(z)− CDFν(z)|

It is a metric. For discrete distributions (e.g, where µ and ν are represented as a sample from potentially
continuous distributions), then it can be computed efficiently (like with change-point anomalies) by sorting
these points, and scanning them in sorted order while maintaining the CDFs. Note because of this, it is valid
to define over any domain X which has a total sorted order, and is efficient to work with if there is a fast
comparator operator.

We next discuss the most common approaches that scale naturally and well to multi-dimensional settings
for µ, ν defined over Rd.

10.1 Wasserstein Distances
This is a powerful family of metric distances for distributions µ, ν defined over a metric space (X ,d). That
is, it works for some domain X and a metric base distance d defined on that domain. For this discussion we
will restrict to the case where X = Rd and for a, b ∈ Rd that d(a, b) = dEuc(a, b) = ‖a− b‖.

Also, for simplicity, lets assume that the two distributions µP , νQ are actually represented by a set of
discrete observations P ⊂ Rd for µP and Q ⊂ Rd for νQ. That is, we assume a uniform measure on the
points; these may arise via sampling P ∼ µP and Q ∼ νQ. We will also assume both have n points, so
|P | = |Q| = n. These restrictions are not needed, but will simplify exposition.

Now this metric is to show the cost of transforming from one distribution P to another Q. It accounts for
both the probability in P andQ, and the distance between elements p and q. It wants to find a transportation
plan π that moves each p ∈ P to some q ∈ Q that has the minimum cost. However, it cannot move two
pi, pj to the same q; it must keep them balanced.
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A common analogy (which describes the W1 variant) is the Earth Movers Distance (EMD). It imagines
both P as piles of dirt, and Q as a set of holes in the ground, and the goal is to make it flat (it assumes
here the amount of dirt and amount of hole space is the same). If the distance d(p, q) measures the cost of
moving dirt from one location p to another q, then EMD measures the total cost of filling all holes under Q
with the dirt from P .

In this context, we will describe a transportation plan γ from P to Q as a set of edges from P to Q
(a bipartite graph on P ∪ Q), so (pi, qi) ∈ γ if the plan routes from pi to qi. Note that if (pi, qi) ∈ γ,
then (pi, qj) cannot be in γ if i 6= j. And similarly, nor can (pj , qi). Let Γ(P,Q) be the set of all valid
transportation plans between P and Q. (Note this is more complicated if P and Q have different sizes or
the weight is not uniform, etc – but the main idea is the same).

Also, note that in Γ(P,Q) we do not pre-assign an ordering label {p1, p2, . . . , pi, . . . , pn} and {q1, q2, . . . , qi, . . . , qn}
so we would not always know that (pi, qi) ∈ γ. We can consider any permutation over Q (e.g., could be
(p6, q3) ∈ γ is a valid γ ∈ Γ(P,Q).

Now finally we can define the Wasserstein Ws distance (for s ∈ [1,∞),∞) between two equal-sized
point sets P,Q ⊂ Rd as

Ws(P,Q) = min
γ∈Γ(P,Q)

 1

|P |
∑

(p,q)∈γ

‖p− q‖s
1/s

This is a metric, with the s = ∞ case being defined with a max operator. Its more general form for
distributions µ, ν over metric space (X ,d) with appropriately defined space of transportation plans Γ(µ, ν)
is

Ws(µ, ν) = inf
γ∈Γ(P,Q)

(E(p,q)∈γd(p, q)s)1/s.

As long as d is a metric over X , then Ws(µ, ν) is a metric over probability distributions defined on that
domain X . They are sometimes called the optimal transport (OT) distance.

The most common forms are the W1(P,Q), which corresponds with the Earth Movers Distance (EMD),
and the W2(P,Q) which has some nice computational properties and approximation.

Computation. Note that like in the KS distance, we need to optimize over some method of measurement.
Unlike KS where we found the maximum difference, here we need to find the best (the minimum cost)
transportation plan. This is not as easy as sorting and scanning as in KS (unless d = 1). For the W2(P,Q)
andW1(P,Q), this is a combinatorial optimization problem that has been well-studied, and given theO(n2)
pairs of distances as input, can generically solved in about O(n3 log n) time.

For the W2(P,Q), a fast approximate variant is called the Sinkhorn distance. It “regularizes” the distance
with ”entropy,” but can also be thought of as an interpolation between W2 and the MMD/kernel distance
we discuss next. This makes the problem convex, so the transportation plan minγ∈Γ(P,Q) can be solved
for efficiently with gradient descent sort of approaches. For an ε-approximation to W2 it takes roughly
O(1

εn
2 log n) time; so if ε is not too small, the the cost is not much more than computing all pairs of n2

distances – but still expensive if n is large.
This is a really powerful and useful metric, but gets a bit computational painful to work with for n large.

It is an active research area to improve the runtime, even for approximate versions, even for special cases.

10.2 Maximum Mean Discrepancy (MMD) / Kernel Distance
Another common “base” way to measure similarity / distance between objects is via a kernel, such as a
Gaussian kernel, defined for two points p, q ∈ Rd as:

K(p, q) = exp(−‖x− p‖2).
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Many other notions of kernels are possible, e.g.,

• Laplace K(p, q) = exp(−‖x− p‖)

• Triangle K(p, q) = max{0, 1− ‖x− p‖}

• general Gaussian K(p, q) = exp(−d(x, p)2) for p, q elements of metric space (X ,d).

It is hard to limit what is a “kernel” as there are many useful exceptions to any rule. But here a couple of
common traits are

• K(p, q) ∈ [0, 1]

• K is positive definite. This is equivalent to: for any data set X , a “gram” matrix G ∈ Rn×n for
|X| = n so that Gi,j = K(xi, xj), and G is positive definite (i.e., all of its n eigenvalues are real and
positive).

Note that all examples above satisfy the [0, 1] property, and all except Triangle are positive definite.
Now we can define a distance between point sets using K(p, q) as a generalized inner product. Recall

that with a standard dot product 〈p, q〉 =
∑d

j=1 pjqj , then we can write

‖p− q‖2 = ‖p‖2 + ‖q‖2 − 2〈p, q〉
= 〈p, p〉+ 〈q, q〉 − 2〈p, q〉

Similarly, we can define the kernel distance between two points as

dK(p, q) =
√
K(p, p) +K(q, q)− 2K(p, q).

Whenever K is positive definite (minus a few exceptions, mostly for unusual metric spaces), then dK is a
metric. Its value lies in the range [0,

√
2].

We can then generalize this to over distributions P and Q by defining a generalized notion of similarity
between P and Q using a kernel. For that we use the all-pairs average similarity defined as

K(P,Q) =
1

|P |
1

|Q|
∑
p∈P

∑
q∈Q

K(p, q).

Following this, kernel distance between point sets (aka, maximum mean discrepancy, MMD) is defined

dK(P,Q) =
√
K(P, P ) +K(Q,Q)− 2K(P,Q).

Again (except for a few exotic exceptions), if K is positive definite, then dK is a metric on point sets.
It can also be extended to general probability distributions µ, ν using K(µ, ν) = Ep∼µEq∼νK(p, q), and

dK(µ, ν) =
√
K(µ, µ) +K(ν, ν)− 2K(µ, ν), where it is a metric under the same conditions.

dK vs. Ws: Unlike Ws, these kernel distances do not require solving for an optimal transportation plan
γ ∈ Γ(P,Q), so are more efficient. Although still (aside approximate methods – not covered here) still
require all-pairs computation. They will also lead to a nice Euclidean approximate representation. They are
also resistant to outliers in the distributions, since far away points all get the same minimal similarity, and
the distance effect (of them in the average) is bounded (e.g., by

√
2).

However, W2 distances seem to be a bit more refined, as they ensure each point is matched to a point
in the other distribution. This gives better alignment and does not miss ”modes” of the distributions. The
optimal transportation plan can also be useful in understanding what the distances mean, and for deeper
structural understanding.
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Euclidean-like properties of MMD: Another advantage of the Kernel distance dk is that there is an inter-
pretation of it as acting Euclidean (with all the good things we know how to do with that).

The Gram matrixG soGi,j = K(xi, xj) is a measure of the covariance of the point set under this distance.
As such (see PCA / Eigenstructure part of notes) the eigenvectors of this matrix u1, u2, . . . , un provide an
orthonormal bases. And the Euclidean distance in this basis is equivalent to the kernel distance dK . That is,
after O(n3) time (for the Eigendecomposition), we perform any Euclidean operations on the point set X (or
P,Q). However, this approach needs to know the data X being considered ahead of time.

Another direct method just replaces each instance of a dot product 〈p, q〉 with the kernel K(p, q). Many
L2 formulations can do this (although sometimes it requires at least an n2 or n3 step), and is called the
kernel trick.

A broader perspective considers the Reproducing Kernel Hilbert Space, (RKHS), HK . It is a function
space, so it contains functions, in this case including K(x, ·) ∈ HK for fixed K, but any choice of x.

Importantly, HK is larger than this, and also contains linear combinations of these K(x, ·). For instance,
the kernel density estimate

KDEX(·) =
1

|X|
∑
x∈X

K(x, ·) = Ex∈XK(x, ·).

These are linear combinations, so for any X then KDEX ∈ HK . By considering infinite X we can get
arbitrary positive weights, butHK also allows negative weights.

Again, through a Eigen-decomposition of the Gram matrix G of any finite set of points we can find a
linear, even Euclidean subspace. And Euclidean distance in this subspace is dK , generally for two elements
f, f ′ ∈ HK as ‖f − f ′‖HK

. In this framing,

dK(P,Q) = ‖KDEP − KDEQ‖HK
= ‖Ep∼PK(p, ·)− Eq∼QK(q, ·)‖HK

.

The second formulation gives a hint at where the name maximum mean discrepancy comes from (the ex-
pected value Ep∼PK(p, ·) is a mean), although I like to call it the kernel distance.
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