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ABSTRACT

Anomaly detection in large spatial data sets is difficult. Anomaly detection in large 

spatial data sets with multiple correlated features, becomes even more difficult. Moran’s 

I is a useful function for auto-correlating spatial observations and detecting anomalous 

observations.

Unfortunately, Moran’s I has only been developed for single scalar feature comparison. 

We propose instead to us a vector of features. Now a much more comprehensive data set 

with feature correlation can be utilized to find outliers based on weighted neighbor values, 

instead of arbitrary or administrative aggregation.

The new enhancements proposed here allow for richer and nuanced data analysis. 

With the use of Principal Component Analysis and high dimension feature vectors, 

regions of interest are less am-biguous to detect. We describe new techniques that reduce 

feature noise as well as compu-tational and operational complexity. Our techniques are 

also able to replace other dimen-sional reduction techniques that introduce distortion or 

skewing to the feature set.
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NOTATION AND SYMBOLS

I the Global Moran’s I similarity index value
local I the Local Moran’s I similarity index value
N the number of spatial units indexed by i and j
x feature variable
x̄ mean value of x
wi,j a matrix of spatial weights with zeros where i and j are the same index value
W the sum of all wi,j
x feature vector variable
F feature vector weight matrix
x̄ mean value of x
p principal components vector
d the number of features selected for x
i spatial row count
j spatial column count
cij a spatial grid cell containing an aggregate of observations
C comprised of all cells cij
t given time period, in this study a period of months is used
mot the number of opioid prescriptions filled in a given cij for a given time, t
mnt the number of opioid prescriptions received by people who live outside a

given cij for a given time, t



CHAPTER 1

INTRODUCTION

In the last decade, the ability to digitally monitor and track more and more activities 

has led to larger and larger data sets. As the amount of data collected grows, the need 

for better aggregation and correlation techniques increases. Any enhancement in even the 

smallest part of an analytics algorithm could lead to enormous time savings when poring 

through mountains of amassed data.

1.1 Data Problem
An ever-growing problems is finding anomalies and outliers in spatially autocorre-

lated data. Particularly when the number of observations and features can reach huge 

proportions. Once a set of observations with spatial characteristics has been aggregated 

together, the task of finding anomalies with respect to distance is generally computation-

ally expensive. The ability to weight the value of a feature based on spatial proximity is 

very valuable. One successful and often used approach to find spatial autocorrelation or 

feature correlation is with a technique called Moran’s I.

Moran’s I is used to give an index score or value to a given point, or combined set 

of points, with respect to other neighboring points. If an anomalous feature value isn’t 

characteristic or similar to that of its neighborhood, it is scored with an ”I” value higher or 

lower than its immediate neighbors. Higher if it is a peak or plateau value and lower if it 

is a valley or trough value.

A set of observations with a global I value that is negative, means that all of the ob-

servation values differ from each other or only fit in a large range. A positive I value 

means the feature values fit within a relatively small range or change gradually across the 

spatial domain. The magnitude of the negative value becomes larger the larger the range of

values. Conversely, the tighter the range is, the larger the positive I global value becomes.

Unfortunately, Moran’s I is only able to look for autocorrelation for singular value
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sets.1  This poses a problem for data sets whose interdependency can’t be described with a 

single feature. Many spatial data sets are multidimensional in nature and can only be 

described by multiple associated features.

1.2 Moran’s I
Moran’s I2 was developed by Patrick Alfred Pierce Moran in 1950 as a statistical means 

of calculating spatial observation feature similarity or autocorrelation.3 It is commonly 

used in geographic and spatial analytics to find outlier or anomalous observations. The 

degree to which observations differ is based on their similarity and proximity to 

neighbor-ing observations. The notion of data observation neighborhoods makes it a 

powerful tool when other clustering and aggregation techniques provide arbitrary or 

rigid compilations. Or these other procedures may be too computationally expensive to 

run over large data sets.

Moran’s I global calculation is given by the formula below. Where xi is an observation 

point or an aggregated grid cell. x̄ is the mean scalar feature value for all observation 

points. wi,j is spatial weight index of neighboring observation points. It describes how 

much a neighboring feature value should be taken into account. W is the sum of all spatial 

weights, and N is the total number of observation points or grid cells.

I =
N
W

∑i ∑j wi,j(xi − x̄)(xj − x̄)

∑i(xi − x̄)2

    Moran’s I has been used by social work researchers, Foster and Hipp,4 to go beyond 

ad-ministrative aggregation concepts like zip code, county, or state boundaries. 

Criminology researchers, Mencken and Barnett,5 have used it in a study of murders in 

neighboring counties and disprove metric spatial correlation between county regions.

1. "Spatial Autocorrelation and Moran's I in GIS," GIS Geography , August 11, 2017, accessed November 14,
2017, http://gisgeography.com/spatial-autocorrelation-moran-i-gis/.

2. "Morans I," Wikipedia , May 29, 2017, , accessed November 14, 2017, https://en.wikipedia.org/wiki/
Moran%27s_I. 

3. P. A. P. Moran, "Notes on Continuous Stochastic Phenomena," Biometrika 37, no. 1/2 (1950): 17, accessed
July 14, 2017, doi:10.2307/2332142.

4. K. A. Foster and J. A. Hipp, "Defining Neighborhood Boundaries for Social Measurement: Advancing
Social Work Research," Social Work Research 35, no. 1 (2011): 25-35,  accessed August 1, 2017, doi:10.1093/
swr/35.1.25.

[1.1]



 However, Moran’s I is not limited to simple geographical analytics. It can be applied 

whenever a relational test is needed for data observations that allow for some distance 

metric to set them apart spatially. Gene researchers have utilized it to map spatial sim-

ilarities in genome expressions between generations of plants in order to learn if plant 

self-pollination leads to genetic expression drift.6

Moran uses the spatial weight matrix, wi,j, to calculate how much value of a neighbor’s 

observation to take into account. It is often calculated as the squared inverse distance 

between two observation point. As the distance between two observation points, their 

associated weight value drops off quickly. A threshold limit can also be applied to the 

weight value. A spatial weight can be set to zero if the observation point is too far away 

for consideration. This reinforces the notion of an observation neighborhood.

This well-developed concept of a neighborhood lessens the effect a large outlier can 

have on other observations if it is spatially distant or ”out of the neighborhood”. Only 

when a value is largely different than its ”very near” neighbors can it begin to affect their 

local I values and signal an area of interest or boundary condition between pockets of 

values.7

 Figure 1.1 shows a small example data set where we compute Moran’s I, and its local 

variant which we define next. This indicates that the grid is generally similar, but has 

some variation in feature values amongst close neighbors. Unfortunately, having a 

global indicator only allows for a general impression of the amount of similarity. In 1995, 

Luc Anselin enhanced the resolution of Moran’s formula to allow for individual 

observation scoring.8,9

5. F. Carson Mencken and Cynthia Barnett, "Murder, Nonnegligent Manslaughter, and
Spatial Autocorrelation in Mid-South Counties.," Journal of Quantitative Criminology  15, no. 4 
(1999): 407-22, accessed August 1, 2017, http://www.jstor.org/stable/23366750.

6. Masayuki Maki and Michiko Masuda, "Spatial Autocorrelation of Genotypes in a
Gynodioecious Population of Chionographis japonica var. kurohimensis (Liliaceae)," International Journal 
of Plant Science 154, no. 4 (1993): 467-72, accessed August 1, 2017, doi:10.1086/297130.

7. "Spatial Autocorrelation and Moran's I in GIS,"  GIS Geography , August 11, 2017, accessed November 14,
2017, http://gisgeography.com/spatial-autocorrelation-moran-i-gis/.

8. Luc Anselin, "Local Indicators of Spatial Association-LISA," Geographical Analysis  27, no. 2 (2010):
93-115, accessed July 18, 2017, doi:10.1111/j.1538-4632.1995.tb00338.x.

3 
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Ii =
N

∑k(xk − x̄)2 ∑
j

wi,j(xi − x̄)(xj − x̄)

     Observation scoring does not need to be set over a uniform grid. The observations 

can be spatial data points that are unevenly distributed. wi,j only relies on a discrete 

distance metric between observations. These observations can even be distributed in 

higher order dimensions. This research was developed on a uniform two-dimensional 

grid, but this can be adapted to other applications with higher dimensional orders and 

noncartesian distribution patterns.

1.3 Spatial Opioids Data
An applicable data set for this type of spatial analytics is pharmacy controlled sub-

stance dispensing rate among pharmacies in a aggregate regions. Opioids are a particu-

larly addictive drug class and prescription data has been collected by month for two large 

cities for the year of 2016. Being able to find anomalous or pharmacies with an unusually 

high prescription rate amongst its peer pharmacies would aid in detecting fraud, waste, 

and abuse of this very abused prescription drug class (see section 3.1 for a more detailed 

description of the data layout).

The data set also has the added characteristic of obfuscation via aggregation. Legislated 

privacy concerns dictate that this data can only be reported on in an aggregate fashion and 

adds a measure of anonymity to the data. Also, the actual city names cannot be divulged. 

Any possibility of identifying patients via their prescription history must be completely 

guarded against.

One metric that is often used to see how a pharmacy compares to a cohort group or 

neighboring pharmacies is the the number controlled substance prescriptions that are filled 

over a given period of time. Another accompanying metric is how many of these opioid 

or controlled substance claims are filled for patients who l ive outside of the immediate 

operating region of a pharmacy. Then these measures must be considered over multiple 

periods in order to see if a consistent over utilization trend is present.

9. "Indicators of spatial association," Wikipedia, July 28, 2016, accessed August 14, 2017, https://
en.wikipedia.org/wiki/Indicators_of_spatial_association.

[1.2]
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The effects of the population of patients, the number of competing pharmacies, the

number of nearby physicians and hospitals, or even the income and education levels of

the patients can be used as partial indicators of a pharmacy’s potential for inappropriate

opioid prescription filling behavior. Being able to assess this over multiple periods would

serve to reinforce the ability to detect of anomalous patterns.

1.4 Need for Multidimensional Extension
The current trend of data sets with an ever growing number of features tied to obser-

vation points has been expanding at an unprecedented rate. Our ability to measure more

and more metrics real-time has allowed us to get volumes and volumes of correlated data.

Unfortunately, as we find more ways to capture these high dimensional feature data sets,

we find ourselves faced with the challenge of how to explore and identify anomalous or

interesting regions of observation points. While especially keeping the character of the

interdependent metrics intact.

The opioid prescription data set is a meaningful example of the need to find pharmacies

whose script fill patterns have a high variance compared to their neighboring pharmacies.

One could simply use the raw count value as the scalar value and use local Moran’s I to

find the pharmacy which doesn’t conform to its neighbors. But this would likely give

a terribly incomplete picture without several companion metrics. One metric might be

the distance to the nearest hospital or trauma center. Many prescriptions are often filled

on the way home from a care facility. Another metric like the number of days supply

that are dispensed could temper the number of prescriptions, because only short term

prescriptions are being filled as opposed to long term chronic treatments.

As more of these interrelated features are being discovered and used in claims analysis,

the need to be able to find reliable autocorrelation has also grown. Unfortunately, an

extension to Moran’s I to handle high-dimensional feature sets has not been thoroughly

researched until now. There have been studies using two dimensional feature pairs. The

mathematical formulations are similar, but this research used as in trajectory analysis for

movements of the observation point and limited to 2D (see section 2.3).

Without a high dimensional solution, much analysis and research is based on an inter-

mediate or intervening function to reduce the feature set to a scalar value that can then be



6

used in Moran’s I and local Moran’s I. These techniques include Functional Linear 

Regression (FLR),10 Singular Value Decomposition (SVD),11 and Principal Component Analysis 

(PCA).12

An in-depth exploration of using PCA as a technique will be looked at as a starting 

place to test the potential of using a large high-dimensional featured data set (see sec-

tion 2.1). Some of the positive attributes of using PCA are its ability to reduce noise, 

minimize distant outliers, and produce a singular value that can be ported into the 

Moran’s calculations. Some of the problems associated with PCA are the distortion 

of feature data when only a singular value is taken into account for correlation, the loss 

of the ex-pression of variance comparison between neighboring observations, and the 

increasing time-complexity as more and more dimensions are introduced to the feature 

set.

Using a surrogate function can reduce dimensional complexity. Without this simplifi-

cation to a single feature, the established version of Moran’s I is not able find spatial auto-

correlation. Unfortunately, these reduction techniques can introduce some fidelity loss or 

metric distance skewing that masks outliers and make anomalies difficult to find. Because 

of this Moran’s I needs to be altered in a novel way that can handle a high dimensional 

feature vectors.

10. Gareth M. James, Jing Wang, and Ji Zhu, "Functional linear regression that’s interpretable," The Annals 
of Statistics 37, no. 5A (2009): 2083-108, accessed July 18, 2017, doi:10.1214/08-aos641.

11. Charles F. Van Loan, "Generalizing the Singular Value Decomposition," SIAM Journal on Numerical 
Analysis 13, no. 1 (1976): : 76-83, accessed July 18, 2017, doi:10.1137/0713009.

12. Karl Pearson, "LIII.On lines and planes of closest fit to systems of points in space," Philosophical 
Magazine Series 6 2, no. 11 (1901): 559-72, Accessed July 18, 2017, doi:10.1080/14786440109462720.
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Figure 1.1. A Simple Moran’s I Example



CHAPTER 2

MULTIDIMENSIONAL MORAN’S I

Our exploration for a robust way to detect anomalies and spatial correlations began 

with looking at the use of PCA to produce a single scaler value that Moran’s I and local 

Moran’s I could use in its autocorrelation calculations. Then we discovered that a vector 

multiplication extension to Moran’s I and local Moran’s I could be harnessed to allow for 

varying counts of principal components to reduce signal noise. This also lead us to test the 

new multidimensional feature enhancements with the original feature vector to see if it 

would produce reliable results.

2.1 With PCA
One of the first places to begin reducing the dimensionality of a feature space is to use 

a representative translation function like SVD or PCA. These methods allow for prepro-

cessing of the original feature vector into an equivalent scalar value before attempting to 

create local Moran’s I index scores. For the purposes of this study, PCA was used because of 

its ability to recenter the origin of observation features.1 It also translates the features into 

a principal components vector, with which any number of the first principal components can 

be used to represent the original feature vector p (see Figure 2.1: Recentered Component 

Distribution). Because the unenhanced Moran’s I and local Moran’s I can only process a 

single value, the first principal component, x = p[1], is used for spatial autocorrelation (see 

Figure 2.1: First Principal Component Vector). Depending on the amount of 

aggregation, such as grid based clustering versus individual observation point 

mapping, PCA does well at smoothing out wildly unrepresentative data points. Or 

rather those data points that would skew the local I value and hide other more subtle 

value variations.

1. Hervé Abdi and Lynne J. Williams, "Principal component analysis," Wiley Interdisciplinary Reviews:
Computational Statistics 2, no. 4 (2010): 433-59, accessed July 19, 2017, doi:10.1002/wics.101.
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Some care should be used when selecting the number of features to include in the PCA

calculations. If too many features are selected or features that have no real interdependence,

the local I values take on a continuous range characteristic that can lead to a lack of differ-

entiation between cells and regions.

2.2 Vector Dot Product Version
The alterations of Moran’s I and local Moran’s I to accept are relatively straight forward.

The singular feature value is replaced by the observation point’s feature vector, x ← x,

of length d. Also the mean feature value is replaced by all the observations’ mean feature

vector, x̄ ← x̄. The mean feature vector, x̄ is subtracted from both the feature vector at i,

xi, and j, xj. Then the scalar value or dot product from the two resultant vectors is used in

place of the original scalar equivalents. (xi − x̄) · (xj − x̄) becomes (xi − x̄) · (xj − x̄).

Then we defined the (vector) Moran’s I as:

I =
N
W

∑i ∑j wi,j((xi − x̄) · (xj − x̄))

∑i((xi − x̄) · (xi − x̄))

And the (vector) local Moran’s I as:

Ii =
N

∑k(xk − x̄)2 ∑
j

wi,j(xi − x̄)(xj − x̄)

The vector replacement serves several purposes. First it allows for the analytics of a richer

feature set without the need for linear regressive preprocessing. It saves a significant

amount of computational time complexity. Calculating PCA over large data sets has a

large computational cost associated with it. Another very useful characteristic is that

Moran’s I recenters the centroid of the observations like PCA by subtracting the mean

feature vector from each observation vector, (xi − x̄) · (xj − x̄). The mean feature vector is

defined as the average feature value for each position across all observation feature vectors,

x̄ = [x̄1, x̄2, ..., x̄d]. This negates the need to shift the data centroid before introducing it to

the Moran’s I process.

The modifications to Moran’s I and local Moran’s I does increase the computational

complexity. However, the trade-off is worth it in order remove the entire preprocessing

step like PCA, which can be quite costly, as the number of observations and features grow.

This change was tested with a range of feature counts from 1 ≤ d ≤ 24, with only linearly

[2.1]

[2.2]
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increasing computational time as d increases. In practice a x with a large enough d to cause 

a bottleneck in processing, would likely yield poor analytic results.

When a feature vector with length d > 2000 was tested using the dot product technique, 

the results, while much quicker to compute than with PCA, showed little region differenti-

ation and no real areas of interest were detected. This shows that there is a practical upper 

bound to the number of features that can contribute to the quality of finding regions of 

interest.

2.3 Prior Arts in Spatial Data Analysis
Prior research into vector based features has been somewhat scarce. Work done by 

Liu, Tong, and Liu2 focuses on looking for geospatial movement patterns using two di-

mensional vectors that help follow the movements of observation points. Their research 

focuses on finding t he t rajectory o f a n o bservation p oint r ather t han u sing a  v ector of 

features to describe an observation point in high dimension.

While this work is useful in analysis of spatial trajectories in two dimensions, it does not 

address complex feature correlation. The biggest differences in the feature consideration is 

the extension to higher order feature dimensionality and the use of features as observation 

point descriptors rather than a tracking mechanism. This research also looks at the feature 

vector as an appropriate means of time series analysis.

2.4 Geometric Intuition
The reason a feature vector can readily replace a singular value in Moran’s I and 

local Moran’s I is because the dot product of the feature and mean vectors produces a 

scalar value that can be multiplied by the weight value, wi,j.

xi = [xi,1, xi,2, ..., xi,d]

xj = [xj,1, xj,2, ..., xj,d]

〈xi, xj〉 = (xi,1xj,1) + (xi,2, xj,2) + ... + (xi,d, xj,d)

The subtraction of the feature vector mean, x̄, leads to a recentered centroid. Leading

2. Yu Liu, Daoqin Tong, and Xi Liu, "Measuring Spatial Autocorrelation of Vectors," Geographical 
Analysis 47, no. 3 (2014): 300-19, accessed August 24, 2017, doi:10.1111/gean.12069.

[2.3]



11

to no extra calculations for an origin different than the centroid of the observations feature

values. Moran’s I then looks for spatial autocorrelation based on feature variance and is

particularly well-suited for anomaly detection. This is a very desirable characteristic of the

vector enhancement. It means that there is no feature distortion introduced that is often

apparent with the use of approximation methods.

Other preprocessing approximation methods, like linear regression or SVD, have a high

probability of skewing or distorting the relationship between all the observations data

points. Especially if any of the observation points have wildly different values. Since

Moran’s I considers each point’s data in place without interpolation, a single observation

can only affect its own index value and those immediately adjacent to it, and not all the

observation points in the field.
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Figure 2.1. PCA Feature Reduction



CHAPTER 3

DATA EXPERIMENTS

We were fortunate to obtain the use of a large adjudicated pharmacy claims data set. 

The data were mined, cleaned, and aggregated for this study. The features selected 

were intentionally selected because they rely on the same dimensional unit space. 

Since this approach to high-dimensional testing hasn’t been explored, it made sense 

to keep the domain space reasonably simple.

3.1 Data Characteristics
The data for this study comes from anonymized pharmacy claims data from two large 

cities1. The claims dates cover a recent full calendar year. Approximately 23 thousand 

members, 4 thousand pharmacies, and 240 thousand pharmacy claims are represented in 

this data set.

The data has been superimposed on a grid whose cells are 2.5 miles (4.02 km) in height 

and width. Each cell, cij, (see Figure 3.1) has an aggregated metric of pharmacy 

opioid23 claim counts, mot, member counts. An additional metric of the claim counts 

that are filled by at pharmacies with a given cell, but the person receiving the script lives 

outside the boundaries of the cell, mnt. This feature is intended to capture the aspect 

of members who are willing to go to neighboring cells to more easily fill a  controlled

1. “Health Insurance Portability and Accountability Act of 1996,” H.R. Res. 3103, 104th Cong. , 1,936
(1996) (enacted), accessed July 1, 2017 and "The Patient Protection and Affordable Care Act.", H.R. Res. 
3590, 111th Cong. , 124 119 (2010) (enacted), accessed July 1, 2017.  The source and specifics of the data is 
obscured because of HIPPA regulation compliance.

2. Takahiro Ogura and Talmage D. Egan, "Opioid Agonists and Antagonists," Pharmacology and 
Physiology for Anesthesia, 2013, accessed July 14, 2017, doi:10.1016/b978-1-4377-1679-5.00015-6.

3. "Opioid Abuse and Addiction: MedlinePlus," MedlinePlus , accessed July 15, 2017, https://
medlineplus.gov/opioidabuseandaddiction.html.
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distance(cell1,cell2)

substance prescription.

Metrics for cells are only included in the study if they reported any opioid prescription 

fills. All other cells are used for spacing and distance calculations, but not applied to the 

weighted value calculations, wi,j. mot and mnt values were tested in a raw count form such 

that mot ∈ N and mnt ∈ N, and a normalized form such that ‖mot‖2 ∈ R ∩ [−1, 1] and

‖mnt‖2 ∈ −1 ≤ < ≤ 1.

Each aggregated grid cell, xij, consists an array of two measurements. The number of 

opioid prescriptions dispensed by the pharmacies in cell’s boundaries and the number of 

those dispensed to a person who lives outside of the cell’s boundaries for each month in 

2016. So each cell will consists of an array of 24 values. This data is used as the seed for 

the PCA and vector techniques so that their outputs can be reasonably compared to each 

other.

These features and data layout allow for a comprehensive search for a large spatial 

grid. The cell aggregation model was designed this way for two specific reasons. The first 

is for privacy and legal concerns. Because of the need to identify individual pharmacies 

in commercial studies, these aggregations will undoubtedly be based on individual phar-

macy dispensing counts (see section 3.4 for commercial applications). This will increase 

|C|, but this should prove to be only a linear increase in computational complexity. For the 

purposes of this study it wasn’t necessary to aggregate at that level.

The second reason was for the simplification of neighboring distance computations. 

This spatial mapping structure allows for a much more simplified neighborhood concept 

for observations. Using a grid changes the resolution of the distances between observa-

tions and is useful if the radius from the center observation to the ”edge” of the neighbor-

hood is a relatively large length. If the definition of the neighborhood is somewhat small, 

then the aggregation would produce inaccurate I values with a large variance.

A very simple weight matrix structure, w, was chosen to represent the neighboring 

relationship of each grid cell to every other grid cell. The weight matrix is comprised of 

an array for each grid cell. Each array position or cell receives a weight value if it is within 

some maximum threshold distance to the reference cell. In this case, if two grid cells are 

within 50 miles (80.47 km), then the weight value, wi,j, is set to the inverse distance 

between the two cells, wi,j = 1 .
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Another data element that wasn’t initially built into the model, but became very nec-

essary, was the materialization and storage of the neighborhood space with respect to 

each individual cell. Prior to its generation and inclusion, in the process, calculating 

the neighborhood ad hoc was a large portion of the computation cost that had to be 

reprocessed over and over for spatial weight calculations (see section 4.1 for more details).

3.2 Results PCA
The first phase of testing was to use PCA on the opioid feature set and then use the first 

principal component value in the Moran’s I calculations. This created a base line of local 

Moran’s I index values that could be compared to any following high dimensional version 

results. Although the interdependence of features to one another can’t be measured in the 

results, an idea of the regions of interest could be constructed and used as a guide for the 

quality of the results from the multifeature testing (see Figure 2.1).

For the two dispensing metrics selected for this study, mot and mnt, the unit measures 

are a count of opioid prescriptions dispensed. However, if one of the features uses a 

completely different basis of measurement, it is very important to normalize the feature 

values, 0 ≤ ‖mot‖ ≤ 1. This prevents one feature from skewing the total results, because 

its range of values is wildly larger than another.

The results of local Moran’s I on the first principal component for City 1 (see Figure 

3.2) provide a very good idea of where the anomalous cells are. The highlighted area of 

interest shows a large variance in opioid dispensing counts. This large variance in 

conjunction to the proximity of the dispensing diversity increases the local I value, 

making Cell 320 a likely candidate for further investigation. Because its adjacent neighbors 

had meaningfully fewer dispensed prescriptions and particularly to a larger proportion 

of people who live outside of its boundaries.

City 2’s first principal component results (see Figure 3.3) also does a good job of 

finding the cell with the largest variance to that of its neighbors. The histogram 

distribution is similar to City 1. The two cells with the highest local I value are the cells 

with the index value of 26 and 37.

After doing analysis on the local Moran’s I index values based on the first principal 

component, it became clear that a new technique would be necessary to see the effect of
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using more than one principal component value (see appendix A). A new method was 

needed to alter Moran’s I and local Moran’s I to use feature vectors.

Making these alterations allowed for different multiples of PCA values to be tested and 

studied incrementally (see Figure 3.4). The results show a shift of the mean local I 

value as well as a general narrowing of the bell shape. The anomalous cells still 

discernable through all levels of principal component selection, but the variance and 

range fell within much smaller bounds.

Perhaps a more compelling point of interest are the cells with patently negative cor-

relation index value in comparison to their neighboring cells (see Figure 3.5). Here 

we use the first 15 principal components in the vector enhanced local Moran’s I algorithm. 

The contrast shown between Cell 320 and 284 their neighbors is quite remarkable. While 

the neighboring observation cells do show a varying amount of opioids (the o values) 

being dispensed, their calculated index values produce a clearly differentiated region 

when the color coding gradient is applied. The noise reduction effect of PCA highlights 

two very good candidates cells, which warrant further investigation.

3.3 Results Vector Feature Moran’s I and local Moran’s I
Once the PCA vector calculations were complete, it became possible to put the original 

feature vectors in place of the PCA calculated data set (see Appendices B and D). The 

local Moran’s I index results, for 12 pairs of monthly measures, were nearly identical 

to the first principal component results ( see Figure 3.6). The local I variance and 

histogram distributions only differed slightly by value range4 (see Figures 3.6 and 3.7). 

This shows that results from the first principal component and the high dimensional feature 

vector enhanced local Moran’s I highlight the same number of interesting regions. With 

further comparison, the regions identified are the same.

The distribution pattern for the local I values were consistent between City 1 and City 

2. The differences between local I scores between the two cites are accounted for by the

number of observation cells. City 1 had significantly more cells for comparison.

In order to verify the quality of the findings, traditional techniques were used to deter-

4. The PCA vectors produced by the testing harness are correct in terms of direction and proportion, but
need to have scaling corrections made in order to tune the results between the raw FC and PCA vectors.
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mine which cell, or cells, might be the best candidate(s) for further more labor intensive 

follow-up. The most likely cell identified using a conventional approach was Cell 192 (see 

Figure 3.2). It had the highest prescription rate, month over month. It averaged 

121.25 opioid scripts over the 12-month period and had a really high number of 

nonboundary patient script fills.

Cell 192 would have initially seemed like it would have the highest local I score. How-

ever, because it had very few near-neighbors, it ended up scoring very low. Ultimately, 

this is because there are very few pharmacies in the immediate surrounding cells. Without 

any near-neighbors to compare for variance, this cell received a somewhat average local I 

index value.

Because all the neighboring cells lack pharmacies, nearly all of the neighboring cell 

patients likely go to Cell 192 to fill a n y  k i n d o f  p  r  e scription. U s i ng a  l i n ear regressive 

or ordinary least squares approach, this cell would most certainly have been flagged for 

further research. However, the local I score doesn’t warrant deeper investigation, because 

it isn’t anomalous to its neighbors. Its relative isolation determined by local Moran’s I 

essentially removes this false positive from the anomaly candidate list.

Cell 320 (see Figure 3.2) scored the highest local I value. It had roughly one-third the 

number of scripts than that of Cell 190. But because the comparison to its neighbors 

showed larger variance, the cell received an local I value at the top of the scoring range. 

This makes it much more of a candidate for further fraud, waste, and abuse studies.

The area of interest indicated in City 2 provided another insight that wouldn’t have 

necessarily been found as easily or quickly by using other standard techniques (see 

Figure 3.3). Cell 37 had the highest prescription rate on average all the cells. However, 

Cell 26 scored the highest local I value, not because it had the most prescriptions, but 

because its prescription counts had a large margin of difference compared to its 

neighbors. The ability of this technique allows for a much more nuanced analysis.

3.4 Evaluation and Ramifications
Feature vector multiplication has several advantages over the two stage linear regres-

sive techniques. First it reduces the number of data processing steps. It reduces the 

computational complexity and allows for very high dimensional feature sets. Assuming
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any necessary normalization steps are taken, it introduces no observation measurement 

distortion or skewing.

There are a few reasons that PCA preprocessing would be a better choice over using 

the original feature set in the vector enhanced local Moran’s I. If the full number of features 

were orders of magnitude larger than that of the n-principal components, or resources like 

Random Access Memory or disk space where somewhat limited, or if one felt that 

omitting the less significant principal components could reduce noise or false positives, 

then an argument in favor of PCA’s use could be made. Using PCA in conjunction with 

Moran’s I is a new technique and is an especially intriguing concept when coupled with 

vector local Moran’s I.

The feature vector calculation enhancement has proven to be very effective in high-

lighting regions of interest. Especially considering the ability to layer complimentary 

feature values is key to building accurate and complex models. It also gives the ability 

to do meaningful time-series comparison without having to explicitly encode the concept 

of time into the feature set.

Simply adding the dimension of time as spatial coordinate or feature extends the pos-

sible research arena to spatial and chronological anomaly detection. Behavior research 

both human and natural could be greatly expanded. A common research problem is that 

of seasonal drug dispensing and consumption. Being able to track multiple features like 

location, quantities, dates dispensed, and days supply could lead to outlier detection for 

different disease states and possibly point to the source of epidemics.

The research domain in this study centers around opioid fraud waste and abuse. It 

is particularly topical and is considered a top agenda item for many healthcare and gov-

ernment organizations.5 Particularly a past research study done using metric clustering 

and pharmacy opioid dispensing outlier detection is being used at Anthem, Inc., a leading 

healthcare provider in the United States, to detect prescription abuse.6

This study will enhance the ability to detect more nuanced patterns. It will be used in

5. James Oliphant, "Trump declares national emergency on opioid abuse," Reuters, August 10, 2017, ,
accessed August 15, 2017, https://www.reuters.com/article/us-usa-trump-opioid/trump-declares-national-
emergency-on-opioid-abuse-idUSKBN1AQ2AW.

6. "Anthem Blue Cross and Blue Shield Program Tackles Inappropriate Opioid and Rx Drug Use,"
Anthem, Inc., May 25, 2016, accessed May 30, 2016, https://www.anthem.com/press/newhampshire/
anthem-blue-cross-and-blue-shield-program-tackles-inappropriate-opioid-and-rx-drug-use/.
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 many different areas.  From the perspective of fraud, waste, and abuse, it will speed up 

the search for pharmacies and doctors who aren’t using best practices for the use of 

controlled substances. It can be used to find hospitals and care facilities whose 

performance metrics as a whole provide better care then their cohorts. Complex 

measures for patient care can be looked at as a whole, rather than in pieces.
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ci,j = [moi,j, mni,j]

cij = [c1,1, c1,2, ..., c2,1, c2,2, ..., ci,j]

Figure 3.1. Spatial Grid Data Layout
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Figure 3.2. City 1: First Principle Component Results
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Figure 3.3. City 2: First Principle Component Results
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Figure 3.4. City 1 and 2: Color Legend and Histograms
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Figure 3.5. City 1: 15 Principal Components Negative Correlation
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Figure 3.6. City 1 and 2: Full Feature Vector vs. 1 PCA Histograms
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Figure 3.7. City 2: Full Feature Vector vs. 1 PCA Results



CHAPTER 4

IMPLEMENTATION CHALLENGES AND
OPTIMIZATIONS

Perhaps the largest challenge of these experiments was having to produce a testing 

harness capable of a implementing a a fair amount of testing variations. For example, the 

ability to test n number of principal component values took time and care to ensure that 

each step of the process reliably and consistently test each value of n. The complexity of test 

was compounded by the need to test normalized and raw data counts. Then after all the 

initial results where analyzed and we thought we had completed all the testing, another 

variation for a ”greater-than-zero” filter had to be added in to the variation mix. All these 

permutations had to be added without compromising the techniques that produced the 

earlier results.

4.1 Algorithm and Process Enhancements
The code base for this research is a translation from a Java implementation1 of Moran’s 

I to a C#. It was designed to match the output of the commonly used ArcGIS platform.2 

The C# version had fewer external assembly dependencies such that it could be modified 

more quickly and interface with a larger number of data sources of varying types.

The best way to list the process enhancements is the chronological order in which they 

were implemented. The first problem to address was the computational load created by 

processing each pharmacy as its own observation point. The number of pharmacies and 

their corresponding neighborhoods would have produced a jagged neighborhood matrix 

and inverse spatial weight matrix.

1. Fangming Du, “GitHub/MoransI Java,” 2013, https://github.com/Fangmingdu/MoransI_Java.

2. ArcGIS Resources, “How Spatial Autocorrelation (Global Moran’s I) works,” 2013, http://resources.
arcgis.com/en/help/main/10.1/index.html#/How_Spatial_Autocorrelation_Global_Moran_s_I_

works/005p0000000t000000/.
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The first o ptimization w as t o a ggregate t he p harmacies t o g rid c ells. T his signifi-

cantly sped up the local Moran’s I searches for appropriate neighbors and their spatial 

weights. This also allowed for some optimization of search steps. Because we know that 

the neighborhood matrices are regular and ordered, we allowed the algorithm to break 

out of searches at known regular points when expected neighbors or weights would have 

already been found if they existed.

The next problem that consumed a large amount of processing resources, was the 

calculation of pharmacy neighborhoods. Especially when large data sets were used for 

testing. It was quite costly to recalculate which cells were neighbors and which were not. 

It could have been done with a function that calculated neighborhoods ad hoc. After seeing 

that the neighborhoods would be needed repeatedly, and were of a determinate nature, a 

cached neighborhood set proved to be much more effective. Turning the neighborhood 

mappings into a materialized data read in at run time made the local I score calculations 

much faster. It also provided a lot of insight into the way local Moran’s I calculations shifted 

through the grid data set.

The inverse spatial weight matrix was not built into a separate data set, though. Its 

calculations were built into a discrete function and calculated once per run. It contains 

a structure similar to the neighborhood matrix. Instead if simple yes/no indication of

adjacency, a 1
distance2 where the distance is less than some threshold. Once the neighbor’s

weights were calculated, they were moved to an in memory hash table. Then a binary 

search was substituted for a iterative search pattern. This cut the run times significantly.

The original inverse spatial weights were also using a grid unit when calculating dis-

tances. The new code was altered to calculate geographic distances instead. This was 

necessary to align and aggregate the pharmacies to grid cells. It will also become impor-

tant when the code is used on the distances between individual pharmacies. Geographic 

distances will be the best way to create accurate local I values.

Once the changes to the Moran’s I and local Moran’s I code to allow feature vectors 

instead of scalar values was complete, 1 to 24 elements of the principal components were 

run. Then the initial source data for the PCA calculations were also used as the source 

data for the Moran’s I calculation step. The results of the full feature vector 

compared to the first principal component were remarkably similar. They essentially 
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varied by range and scale, but the regions of interest, trough, and valley scores matched 
up particularly well.

The visualization of the code was developed using C#, html, javascript, and D3.3

It showed large regions of uninteresting cells with no prescription counts at all. This 

was due to a lack of pharmacies aggregated to them. It became clear that a lack of 

data in these areas was making it hard to find areas of interest, even after color 

gradation and border differentiation were applied. This was the impetus for the last 

optimization of removing cells with zero prescriptions filled. The resulting local I scores 

took on a much more expected bell-shaped distribution pattern (see Figure 4.1).

The application of the ”greater-than-zero” filter make the areas with prescription vari-

ance much more apparent. This simple screening measure of script count, could easily be 

replaced by a more sophisticated threshold function that looks at any number of values to 

determine the potential inclusion of a cell or observation point in the calculation set.

3. Mike Bostock, "Data-Driven Documents," D3.js, , accessed January 5, 2017, https://d3js.org/.
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Figure 4.1. City 1: Pre- vs. Postzero Filter Distribution



CHAPTER 5

CONCLUSION

There is still a fair amount of testing that needs to be done to fully explore the 

”effective range” of these techniques. The instances of where this work enhances or 

hinders the ability to search for spatial autocorrelation still need rigorous bounds 

testing to find the best use cases for the application of the these techniques.

5.1 Future Work
The next refinement to test is the addition of a  feature weight matrix, F , that can be 

multiplied by the feature vector such that different features could be considered more or 

less important than others. The weight vector could be used by an domain expert to tune 

the feature values in such a manner that all features could be considered, but only in the 

proportion that they are helpful to the over all view of the data.

Ii =
(xi − x̄)

m2 ∑
j

wi,j((Fxj)− x̄) where: x̄ =
∑ Fxi

N

A good example would be the number of distinct count out of area prescribers. If a region

fills a lot of scripts by out of region doctors, then it would reflect a fair amount of travel

just to fill a prescription. However, this value is not nearly as important as the overall

opioid prescription count. This would then add the need to say that particular feature is

only proportionally as valuable a metric.

Also a more robust test of interest region detection would be the use of a synthetic data

set that has randomized noise variation throughout the field. Seeded cells or group of cells

with a larger value threshold of variance could be used to simulate regions of interest.

Then the probability of detection can be calculated given a threshold range for testing over

a number of samples. Essentially allowing a deeper inspection of the lower and upper

bounds of reliable variance detection.

[5.1]
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5.2 Summary
Modern data analysis is constantly be pushed to understand more and more connected 

measures. The growing number of observations are taking their toll on prevailing clus-

tering and administrative aggregation techniques. Moran’s I has a wonderfully elegant 

way of creating region based autocorrelation assertions. Its strength of finding locality 

based variance hard to beat. The ability to successfully identify exceptional or suspicious 

observations points or regions has a wide variety of applications. Far beyond simple map 

analysis.

Unfortunately, current Moran’s I and local Moran’s I calculation techniques are some-

what limited. They are often restrained to a simple scalar metric, which is probably not 

enough information to understand trend or complex relational undercurrents. A proxy 

value is sometimes substituted via hash or regression function, but this is often expen-

sive in terms of computational cost, and can warp the relationship between features and 

observation points.

Some exploration in two-dimensional (2D) feature vectors has been made, but it 

really only examined observation trajectory rather than high dimensional interrelated 

feature vectors. There is growing trend of large spatial feature set collection. Without the 

extensions and optimiza-tions demonstrated here, these types of data sets are hard to 

reduce and quantify into a unifying index value.

This new combination of PCA and local Moran’s I shows that in combination they can 

be effective at reducing noise and computational resources need to find autocorrelation. 

The high dimensional vector extensions have proven that unusual regions and observa-

tion points can be calculated and highlighted in a manner that is linearly efficient with 

respect to the feature count. This research proves that nuanced associated features can 

lead to very sophisticated results that can reduce noise and false identification of regions 

of interest using PCA noise reduction. Moreover, it has the ability to reduce operational 

and administrative complexity from the typical analytic processes.
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Figure A.1
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Figure A.2
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Figure A.3
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Figure A.4
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Figure A.5
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Figure A.6
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Figure A.7
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Figure A.8
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Figure A.9
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Figure B.1
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Figure C.1
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Figure C.2
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Figure C.3
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Figure C.4
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Figure C.5
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Figure C.6
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Figure C.7
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Figure C.8
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Figure C.9
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Figure D.1
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