
Zombie Hashing: Reanimating Tombstones in a Graveyard

YUVARAJ CHESETTI∗,Northeastern University, USA
BENWEI SHI∗, University of Utah, USA
JEFFM. PHILLIPS, University of Utah, USA
PRASHANT PANDEY,Northeastern University, USA

Linear probing-based hash tables offer high data locality and are considered among the fastest in real-world

applications. However, they come with an inherent tradeoff between space efficiency and speed, i.e. when the

hash table approaches full capacity, its performance tends to decline considerably due to an effect known as

primary clustering. As a result they are only used at low load factors.

Tombstones (markers for deleted elements) can help mitigate the effect of primary clustering in linear probing

hash tables. However, tombstones require periodic redistribution, which, in turn, requires a complete halt of

regular operations. This makes linear probing not suitable in practical applications where periodic halts are

unacceptable.

In this paper, we present a solution to forestall primary clustering in linear probing hash tables, ensuring

high data locality and consistent performance even at high load factors. Our approach redistributes tombstones

within small windows, deamortizing the cost of mitigating primary clustering and eliminating the need for

periodic halts. We provide theoretical guarantees that our deamortization method is asymptotically optimal

in efficiency and cost. We also design an efficient implementation within dominant linear-probing hash tables

and show performance improvements.

We introduce Zombie hashing in two variants: ordered (compact) and unordered (vectorized) linear prob-

ing hash tables. Both variants achieve consistent, high throughput and lowest variance in operation latency

compared to other state-of-the-art hash tables across numerous churn cycles, while maintaining 95% space

efficiencywithout downtime. Our results show that Zombie hashing overcomes the limitations of linear probing

while preserving high data locality.

CCS Concepts: • Theory of computation→Data structures design and analysis.

Additional KeyWords and Phrases: Dictionary data structure; Hash tables

ACMReference Format:
Yuvaraj Chesetti, Benwei Shi, Jeff M. Phillips, and Prashant Pandey. 2025. Zombie Hashing: Reanimating

Tombstones in a Graveyard. Proc. ACMManag. Data 3, 3 (SIGMOD), Article 236 (June 2025), 27 pages. https:

//doi.org/10.1145/3725424

1 Introduction
Hash tables are one of the fundamental data structures used for managing data in many applications

across computer science, including databases [10, 13, 21, 25], storage [6, 12, 18, 27, 45, 58], machine

learning [53], high-performance computing [1, 30], computational biology [4, 29], security [22, 52],

∗
Both authors contributed equally to this research.

Authors’ Contact Information: Yuvaraj Chesetti, Northeastern University, Boston, Massachusetts, USA,

chesetti.y@northeastern.edu; Benwei Shi, University of Utah, Salt Lake City, Utah, USA, b.shi@utah.edu; Jeff M.

Phillips, University of Utah, Salt Lake City, Utah, USA, jeffp@cs.utah.edu; Prashant Pandey, Northeastern University, Boston,

Massachusetts, USA, p.pandey@northeastern.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2836-6573/2025/6-ART236

https://doi.org/10.1145/3725424

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

https://doi.org/10.1145/3725424
https://doi.org/10.1145/3725424
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725424

236:2 Yuvaraj Chesetti, Benwei Shi, JeffM. Phillips, and Prashant Pandey

and compilers [54]. As a result, high performance hash tables are critical to achieve efficiency and

scalability in modern data-intensive applications.

The linear probing hash table [3, 14, 40] is among the most fundamental data structures in com-

puter science. It is one of the fastest hash tables and a go to data structure in every system builder’s

toolbox. A linear probing hash table is implemented as an array of size𝑛, where each slot either holds

an element or remains empty (i.e. a free slot). To insert an element 𝑎, the hash function computes

ℎ(𝑎) ∈ [𝑛], and𝑎 is placed in the first free slot starting fromℎ(𝑎) and continuing sequentially through
ℎ(𝑎)+1,ℎ(𝑎)+2, and so on (wrapping around using modulo 𝑛 if needed). To query 𝑎, the search scans

these slots sequentially, stopping when 𝑎 is found or when a free slot is encountered.

The key property that makes linear probing appealing is its data locality: each operation only
needs to access one or a small number of contiguous cache lines. Even with multiple cache misses,

hardware prefetching reduces their cost due to the locality of accesses. Most in-memory production

indexes [14, 57] treat the effective cache-line size as 256 bytes even though the hardware cache

lines are 64 bytes. Data locality is further critical for building large-scale hash tables for slower

storage devices and distributed settings. In these cases, we can perform hash table operations using

a single block transfer if contiguous cache lines are accessed. As a result, numerous real-world data

management applications employ linear probing for quickly processing and indexing large-scale

data [7, 14, 15, 23, 28, 34, 35, 37, 39, 41, 43, 44, 47, 49, 51].

Hash table performance.Hash table performance is defined in terms of space efficiency and speed.
Space efficiency is the ratio of the size of the dataset over the size of the hash table. Speed is further

defined in terms of throughput and latency. High space efficiency is necessary to operate in memory-

constrained settings. High throughput enables processing large-scale data quickly. Finally, low and

bounded worst-case latency guarantees consistent throughput.
In this paper, we focus on designing hash tables that can offer consistent and high throughput while

achieving high space efficiency. This has been a longstanding open problem in hash table design.

Target applications. Both the space efficiency and speed of hash tables are crucial for modern data

management applications. Various real-world data management applications, such as in-memory

caches [32, 46], streammonitoring systems [15, 43], sparse-tensor contractions [26], and genomic

assemblers [31], rely on linear probing hash tables to process large-scale data inmemory-constrained
settings. For instance, in-memory caches [32, 46] alwaysmaintain hash tables at high space efficiency

and must provide consistently low and bounded worst-case latency (i.e. that is no halts) to guarantee

service-level agreements. In network streammonitoring systems [15, 43], minimizing worst-case

latency is essential to prevent packet loss during data ingestion. In metagenomic assembly [31], even

a 5-10% difference in hash table space efficiency can significantly affect the overall accuracy of the

assembler.

Challenges in linear probing. Linear probing hash tables suffer from the inherent tradeoff between

space efficiency and speed. The performance of operations drops significantly as the hash table

becomes full. The reason for these slow insertions is that elements in the hash table have a tendency

to cluster together into a long contiguous sequence of occupied slots; this is known as primary
clustering. Primary clustering is often described as a “rich gets richer” phenomenon, in which the

longer a run gets, the more likely it is to accrue additional elements [20]. Quadratic probing [16],

which stores elements at a sequence of quadratically growing and non-contiguous slots is commonly

suggested as a solution of the primary clustering problem. But the lack of data locality at high load

factors again leads to severely degraded performance.

To overcome the effect of primary clustering, probing-based hash tables often employ tomb-
stones [3, 14]. Tombstones are markers for deleted elements. Tombstones help avoid the immediate

compaction that is necessary to rearrange the elements after the deletion. Tombstones do not reduce

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

Zombie Hashing: Reanimating Tombstones in a Graveyard 236:3

0 50 100 150 200 250 300

0

2

4

TombstoneHT runs

out of space

Churn cycle

T
h
ro
u
g
h
p
u
t
(M

O
p
s/
s)

ZombieHT GraveyardHT TombstoneHT

Fig. 1. Throughput of linear probing hash tables with tombstones for multiple churn cycles (updates and
queries in equal portions) maintained at 95% load factor. GraveyardHT has lower throughput due to frequent
rebuilds (approximately once per churn cycle) and throughput spikes during churn cycles with no rebuilds. The
linear probing hash table with tombstones (TombstoneHT) [40] dies after 150 churn cycles due to accumulated
tombstones. GraveyardHT [3] periodically stops and redistributes tombstones resulting in halts. Deamortiza-
tion design in zombie hashing (ZombieHT: this paper) enables consistent performance without periodic halts.

the size of primary clusters, but make insertions and deletions faster. Tombstones interact asymmet-

rically with queries and insertions: queries skip tombstones during the probe, whereas insertions

treat the tombstone as a free slot.

Bender et al. [3] showed that merely using tombstones after deletions leads to their accumulation

and performance slowdowns. To avoid this, the table can be regularly rebuilt to clear out tombstones.

Graveyard hashing, introduced by Bender et al., periodically redistributes tombstones to ensure low

amortized costs for all operations. It achieves better performance than Knuth’s analysis [20], with

expected operation costs of𝑂 (𝑥) when the load factor is 1−1/𝑥 , improving on Knuth’sΘ(𝑥2) bound
for inserts without tombstones.

Graveyard hashing is not practical yet. The paradigm described by Bender et al. [3] (FOCS 21)

is exciting and positions linear probing as a viable candidate for high performance hash tables.

However, graveyard hashing is not suitable for deployment in practical settings for a variety of

reasons. Most notably, it is an amortized analysis, and the algorithmmust regularly stop hash

table operations to clean and rearrange all of the tombstones. While the cost of this operation does

not dominate the runtime over a long run, it results in complete downtime and dramatically hurts the

latency during these clean-up periods, which can be unacceptable for high-performance, time-critical

systems [11, 31, 32, 43, 46].

Figure 1 shows the throughput of the state-of-the-art ordered linear probing hash tables for mixed

workload containing 50% queries and 50% updates (inserts/deletes). The linear probing hash table

employs tombstones (TombstoneHT) deletions. However, it does not stop to reclaim tombstones. As a

result, TombstoneHT fails after 150 churn cycles due to tombstone accumulation. This occurs because

tombstones introduced by deletions can only be consumed by inserts if the insert falls within the

immediate cluster to which the item hashes. Over time, tombstones accumulate, ultimately causing

the hash table to run out of empty slots [3]. GraveyardHT on the other hand stops and redistributes

tombstones, resulting in periodic halts of operations and high throughput fluctuations.

Why consistent performance is hard? Designing a hash table with consistent performance

guarantees is challenging. Local redistribution within a cluster (a sequence of occupied slots) seems

promising compared to global redistribution (as in graveyard hashing). However, the cost of local

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

236:4 Yuvaraj Chesetti, Benwei Shi, JeffM. Phillips, and Prashant Pandey

redistribution grows with the cluster length, which can be as large as𝑂 (𝑥2), causing performance

slowdowns. Maintaining two versions of the hash table for redistribution is another option but in-

creases peak space usage significantly. To maintain consistent, high performance, we need a hashing

scheme that guarantees𝑂 (𝑥) cost per operation, including local redistribution. Our key insight is to
rebuild only a small window of the cluster and push excess tombstones to the end of this window.We

describe in detail the drawbacks of simple deamortization approaches and elaborate on our approach

in Section 3.1, Section 3.2 and Section 4.

This paper. We introduce Zombie hashing, a novel scheme that deamortizes tombstone redistri-

bution across hash table operations, enabling fast operationswithout regular halts. Instead of periodic

halts, Zombie hashing redistributes tombstones locally in bounded windows during insertions and

deletions, maintaining optimal performance. We introduce the notion of push tombstones that enable
us to perform redistribution inside a bounded windowwhile guaranteeing theoretical bounds. We

provide a theoretical analysis showing that deamortizing tombstone redistribution achieves the

same optimal asymptotic cost as graveyard hashing (Section 4). We evaluate several deamortization

strategies, selecting the most efficient one to minimize cache misses (Section 3).

Moreover, we empirically evaluate Zombie hashing and implement it in two linear probing vari-

ants. First, we provide a compact [7] and ordered linear probing hash table (ZombieHT(C)) that

uses quotienting and Robin hood hashing (Section 6). Compact hashing enables ZombieHT(C) to

achieve very high space efficiency. It guaranteesΘ(𝑥) time complexity for all operations, theoretically

proven in Section 4. Unlike graveyard hashing, ourΘ(𝑥) bound does not rely on amortized analysis.

Second, we develop a vectorized linear probing hash table (ZombieHT(V)) using the industry-grade

AbslHT [14]. The vectorized design enables ZombieHT(V) to achieve similar average throughput and

space efficiency as theAbslHT but no periodic downtime and three orders-of-magnitude lowerworst-

case latency. ZombieHT(V) provides aΘ(𝑥2) bound for all operations, similar to other unordered

linear probing hash tables, but without requiring periodic pauses to clear tombstones.

The compact and vectorized variants of the hash table offer distinct tradeoffs. ZombieHT(C),

the compact variant, is highly space-efficient and employs ordered linear probing withΘ(𝑥) time

complexity for all operations, theoretically proven in Section 4. Unlike graveyard hashing, theΘ(𝑥)
bound does not rely on amortized analysis. On the other hand, ZombieHT(V), the vectorized variant,

uses unordered linear probing and delivers higher throughput by utilizing vector (SIMD) instructions.

The performance gain, however, comes at the cost of reduced space efficiency compared to the

compact variant. ZombieHT(V) provides aΘ(𝑥2) bound for all operations, similar to other unordered

linear probing hash tables, but without requiring periodic pauses to clear tombstones.

We perform extensive empirical evaluation to show that the ZombieHT(C) and ZombieHT(V)

achieve high and consistent throughput across hundreds of churn cycles (Section 8). Each churn cycle

evaluates the performance of the hash table when it is almost full. This simulates hash table aging

that is a common workload in production data management settings [11, 32, 46]. In cache systems

with a fixed memory budget, each insert (cache put) is preceded by a delete (cache eviction) once the

cache is full, maintaining a roughly fixed (and typically high) load factor. Insertions and deletions are

balanced in these settings. When insertions and deletions are unbalanced, ZombieHT also employs

primitive tombstones (similar to the graveyard hashing) to balance the number of tombstones and

empty slots. Its theoretical guarantees rely on these primitive tombstones and not deletions to break

primary clusters, eliminating the need for stable, frequent deletions.While resizing can helpmitigate

this issue by reducing 𝑥 , it is often not feasible in memory-constrained applications like caching

systems [32, 46] or streaming monitoring [15, 43]. We conclude by empirically analyzing the tuning

parameters and optimizations in Zombie hashing, and their impact on the overall performance.

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

Zombie Hashing: Reanimating Tombstones in a Graveyard 236:5

Our results.
(1) We devise a novel hashing scheme, Zombie hashing, which efficiently maintains tombstones in

linear probing hash tables; it eliminates the issue of primary clustering at high load factors and
avoids redistribution downtime.

(2) We theoretically prove that Zombie hashing achieves worst case𝑂 (𝑥) time for all operations

even including the cost of tombstone redistribution.

(3) We empirically show that ZombieHT(C) (an ordered variant) offers the best space efficiency, and

among compact, ordered hash tables, provides the highest average throughput, as well as the

best consistency (a 4 orders-of-magnitude improvement) measured as worst case latency and

latency variance.

(4) Similarly, ZombieHT(V) (an unordered variant) matches state-of-the-art space efficiency among

production-level vectorized hash tables. Among these, in common high query/update settings,

it achieves the best consistency (3 orders-of-magnitude lower worst latency).

2 Background

Notations. For a linear probing hash table of size𝑛 containing 𝑡 elements (wemust have 𝑡 ≤𝑛) from a

size𝑢 universe, its load factor is 𝑡/𝑛. We typically write this as 𝑡/𝑛=1−1/𝑥 , and the key quantity in
the analysis is 𝑥 . The variable 𝑥 can be thought of as the average distance between empty slots in the

hash table. At a high load factor such as 95% (when 𝑥 is not a constant), we expect all operations to

be𝑂 (𝑥). While this load factor cannot be exactly maintained, it is common to keep it approximately

fixed (e.g., a load factor of 95% may mean 𝑥 ∈ [18,25]). As long as it stays within some such bounded

range, a so-called hovering workload, it is meaningful to discuss analysis in terms of asymptotic

values of 𝑥 (e.g.,𝑂 (𝑥) orΘ(𝑥2)).
Hash functions.We use a fixed hash functionℎ : [𝑢]→ [𝑛] for the algorithm. For ease of analysis

we assumeℎ is drawn uniformly randomly from a fully independent family of hash functions, and

all of the randomness in the analysis comes from this random choice. While these conditions on the

hash family are somewhat unrealistic in theory, they can be addressed in theory [3] and the practical

construction of these is a mostly an orthogonal issue. For example, Murmurhash [55] is a popular

hash function that offers enough randomness for hash table theory to hold in practice.

Runs and clusters. For linear probing hash tables, a run means an interval of slots where the

elements have same hash value. If ℎ(𝑎) is the hash value of the run, we use 𝑟𝑢𝑛_𝑠𝑡𝑎𝑟𝑡 (ℎ(𝑎))
and 𝑟𝑢𝑛_𝑒𝑛𝑑 (ℎ(𝑎)) for its start and end indices respectively. We define the displacement of the

run as 𝑟𝑢𝑛_𝑠𝑡𝑎𝑟𝑡 (ℎ(𝑎)) −ℎ(𝑎). We call a run at its home position if its displacement is 0, ℎ(𝑎) =
𝑟𝑢𝑛_𝑠𝑡𝑎𝑟𝑡 (ℎ(𝑎)). A cluster is a contiguous sequence of runs, it starts with a run at its home position,

and ends when it reaches an empty slot or any other run at its home position. That is, in a cluster,

other than the first element, every other element is displaced from its home.

2.1 Linear probing hash table
The linear probing hash table is probably the simplest, most well known, and most well studied open

addressing hash table. To insert a key 𝑎, it computes the hash value ℎ(𝑎), and put it into the first
empty slot, starting from indexℎ(𝑎). To lookup a key 𝑎, it scans through the slots starting withℎ(𝑎)
until it finds 𝑎 or a free slot (indicating 𝑎 is not in the table). To delete a key 𝑎, it first does a lookup,

then removes it and shifts the following slots to preceding slots if their hash value is smaller than

the position of that preceding slot.

The well known drawback of the linear probing is primary clustering. The longer a cluster is, the
more likely a key is to be hashed into that cluster, and for that cluster to grow larger. It is an example

of “rich gets richer” phenomenon. Although the expected length of a given cluster isΘ(𝑥) over all

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

236:6 Yuvaraj Chesetti, Benwei Shi, JeffM. Phillips, and Prashant Pandey

h(a) h(b) h(c) h(d) h(e) h(f) h(g)

h(a)
h(b)
h(c)

h(d)
h(e)

h(f) h(g)

Robin hood
hashing

Hash
function
mapping

0 1 2 3 4 5 6 7 8

(a) An example showing Robin hood hashing scheme. Items in the hash table are stored in sorted order of
their hash value. All items hashing to the same slot are stored contiguously in runs.

Redistribute Tombstones

h(a) ✝ ✝ h(d) h(e) h(f) h(g)

h(a) ✝ h(d) ✝ h(e) h(f) h(g)

Keys b, c
deleted

Graveyard
hashing

(after rebuild)

(b) An example showing graveyard hashing scheme. The figure demonstrates the state of the hash table before
and after a graveyard redistribution operation. Items 𝑏,𝑐 are deleted and marked with tombstones. After
redistribution, the empty slots and tombstones are evenly redistributed.

Fig. 2. Robin hood hashing and graveyard hashing schemes.

clusters, the standard deviation isΘ(𝑥4). Since the longer clusters have more keys, for a random key,

the average length of its cluster isΘ(𝑥2) [20]. So the time complexity of all operations areΘ(𝑥2) for
a naive linear probing hash table.

2.2 Robin hood hashing
A simple optimization, called Robin hood hashing, can be made to the naive linear probing hash table

to improve the expected lookup time fromΘ(𝑥2) toΘ(𝑥): instead of putting new key at the end of

a run, we maintain them in sorted order [5, 19, 48]. Figure 2a shows the design of the Robin hood
hashing scheme.

Robin hood with tombstones. Tombstones are widely used in hash tables to improve the perfor-

mance of deletions [14]. By using tombstones, one does not have to shift an entire cluster on a deletion.

Instead, one simply marks the deleted element with a tombstone [17]. Thus the deletion time now

also achieves the same optimal rate as the lookup:Θ(𝑥). Because these scattered tombstones break

up the primary clusters, they can also be utilized by future insertions whose hash value is smaller.

Of course, using tombstones for insertions is not free. Each deletion (except the ones at the end

of a cluster) results in a tombstone, but not every insertion consumes a tombstone. Thus the number

of tombstones will keep increasing and eventually fill the whole hash table. If an element is inserted

far from its home slot, it has no recourse to move closer. Addditionally, lookups need to traverse (or

skip) these tombstones to find an element or determine that it is not in the table.

Thus, the practice says that hash tables using tombstones need to rebuild (clean tombstones) after

some number𝑅 of insertions and deletions. The bigger the𝑅 (rebuild window), the slower the lookup

time, since accumulated tombstones effectively increase the load factor. The smaller the𝑅, the slower

the insertions, as it is less likely to find a tombstone to help speed up the insertion after rebuilds, and

we default to theΘ(𝑥2) analysis.

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

Zombie Hashing: Reanimating Tombstones in a Graveyard 236:7

Hash table Insert Delete Lookup Rebuild Age

Linear Probing [20] Θ(𝑥2) Θ(𝑥2) Θ(𝑥2) ∞
RobinHoodHT [5] Θ(𝑥2) Θ(𝑥2) Θ(𝑥) ∞

RobinHoodHT +TS [17] Θ̃(𝑥1.5) Θ(𝑥) Θ(𝑥) 𝑛/polylog(𝑥)
GraveyardHT [3] Θ(𝑥) Θ(𝑥) Θ(𝑥) 𝑛/(4𝑥)

ZombieHT (This paper) Θ(𝑥) Θ(𝑥) Θ(𝑥) ∞
Table 1. Linear probing variants

2.3 Graveyard hashing
A recent breakthrough by Bender et al. [3] introduced graveyard hashing that showed how to effec-

tively maintain tombstones in a linear probing hash table. Their analysis showed that all operations

would be efficient in an amortized sense. The key idea is to retain some tombstones on a rebuild and

ensure they are evenly distributed. Basically, onewants both empty slots and tombstones; they should

roughly be the same ratio, and both evenly spaced. Figure 2b shows the design of the redistribution

scheme in graveyard hashing.

Forasize𝑛 ahash tablewitha load factorof1−1/𝑥 , graveyardhashingrebuildsneed tobeperformed

after 𝑛/(4𝑥) operations (insertion and deletion). During rebuilding, 𝑛/(2𝑥) tombstones (primitive)

are placed evenly in terms of their hash values. This gives usΘ(𝑥) time complexity for all operations:

insertion, deletion, and lookup. Like many other hash tables that use tombstones, it also must period-

ically stop and rebuild, the rebuild time is𝑂 (𝑛), and so it amortizes to𝑂 (𝑥) per insertion or deletion.

Theorem 1 (Graveyard Hashing [3]). For a graveyard hash table with a load factor of 1−1/𝑥 , each
insertion/lookup/deletion operation takes expected time𝑂 (𝑥), this includes the amortized cost for rebuilds.

Note that while the expected value of these operations is optimal, the variance is extremely high.
If an operation occurs near the start of a rebuild pause, then it takes𝑂 (𝑛) time; since it must first

wait for the rebuild to finish. Themotivation of this paper is the question, can we deamortize
the rebuild operation in graveyard hashing so that themaximum latency of any operation
is bounded?
Table 1 summarizes the theoretical results at high load factors of the linear probing variants

we discussed above. Linear Probing and RobinHoodHT do not need rebuilds (rebuild window size

𝑅 =∞) but they suffer from poor performance at high load factors. RobinHoodHT + Tombstone

(TS) and GraveyardHT need rebuilds to maintain their performance at high load factors. The last

row, ZombieHT, is our main result and the best possible; it not only matches the GraveyardHT

performanceΘ(𝑥) in all operations, but also achieves consistency.Here consistencymeans thatwe do

not stop regular hash table operations during rebuilds independent of the load factor of the hash table.

3 Deamortizing Graveyard Hashing
In this section, we first discuss potential techniques to efficiently deamortize graveyard hashing. We

then present and analyze a simple deamortization technique that we further refine in Section 4.

3.1 Potential deamortization solutions
Wepreview some potential ways to deamortize graveyard hashing, oneswhich do not achieve high ef-

ficiency at high load factors.However, analyzing thesewill ultimately leadus to our proposed solution.

The mostly common deamortization technique is to create two versions of the hash table, one that

is active, and one that is rebuilding. When the rebuild finishes, it switches to active, and the other

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

236:8 Yuvaraj Chesetti, Benwei Shi, JeffM. Phillips, and Prashant Pandey

starts its rebuild. However, this requires at least double the amount of space required (maybe even

requiring a factor 5 increase since a graveyard triggers a rebuild after𝑛/(4𝑥) operations), and defeats
the purpose of studying the high load factor setting.

Another option is to divide the hash table address space into a set of𝑇 regions. In each region

we maintain a graveyard hash table, which each periodically rebuilds. If we ensure each is small

(perhaps on the order of𝑂 (𝑥)), then the rebuild time is no longer problematic. However, while the

load factor across the entire table may be (1−1/𝑥), because keys are hashed to regions randomly,

it will tend to not be even across regions. Some regions will have a significantly higher load factor,

including greater than 1. This is because the hash function is uniformly random, so the guarantee

for uniformly distributing keys is only in expectation. Using the balls and bins analysis [33], the

partitionwithmaximum loadwill have𝑂 (log𝑛/loglog𝑛) keyswith high probability.While this could

potentially be addressed with a backyard (an extra back-up space), this effectively reduces the overall

load factor and leads to very poor locality.

Finally, we consider an attempt to rebuild the hash table in-place. Here, for each operation (in-

sert/delete), we do part of the work towards rebuilding the hash table. Two challenges must be

addressed for this to work. First, the graveyard hash analysis requires everything to be reset after
a fixed “age” of 𝑛/(4𝑥), so one needs to ensure the necessary invariants hold. Second, ideally one
would only spend𝑂 (𝑥) time in rebuilding per operation. However, due to primary clustering, the

average cost of adjusting an entire run may beΘ(𝑥2).
We analyze this in-place rebuild setting in detail in the next section. We show how to handle

the first issue (maintaining graveyard invariants). This approach suffers from the second issue but

provides the foundation for our method, Zombie hashing, which addresses the second issue.

3.2 Simple deamortized GraveyardHT
Here we analyze a simple method to deamortize graveyard hashing (DGH). This method does not

have good locality and induces other overheads that we address in the next section.

This simple approach divides the hash table into𝑅 intervals and rebuilds a single interval after each

insertion or deletion. Rebuilding an interval means removing existing tombstones in the interval,

and putting new ones at an evenly spaced positions called primitive tombstone positions. To clear

the other tombstones, we push tombstones until we either reach a primitive tombstone position that

does not have a tombstone or the end of the cluster. During the pushing process we shift keys back

appropriately to ensure they are not before their home position. This shiftingmaintains the necessary

Robin hood hashing invariants. We can push a set of multiple excess tombstones within one run.

Nowwe show that with the right settings, DGH has the same performance as graveyard hashing

on insertion, query, and deletion, while rebuilding incrementally.

Note that for linear probing hash table with tombstones, the lookup performance is determined by

the “true” load factor 1−1/𝑥 ′, in which the tombstones are also counted as part of the load. So we first

show that 𝑥 ′ is𝑂 (𝑥) if we rebuild it often enough and do not insert too many primitive tombstones.

Lemma 2. Consider a DGH hash table running a hovering workload with load factor 1−1/𝑥 . Let 𝑐𝑝𝑥
be the distance between primitive tombstones and 𝑐𝑏𝑥 be the size of each rebuild intervals. If 𝑐𝑏 ≥𝑐𝑝 ≥ 3,
then the true load factor 1−1/𝑥 ′ ≤ 1−1/(3𝑥).

Proof. There are 2 types of tombstones in DGH: primitive tombstones and those left by deletions.

Let𝑇𝑃 and𝑇𝐷 denote the number of primitive tombstones and deletion tombstones, respectively.

At any time, 𝑇𝑃 ≤ 𝑛/(𝑐𝑝𝑥) by its definition. Moreover𝑇𝐷 ≤ 𝑅 = 𝑛/(𝑐𝑏𝑥) since each non-primitive

tombstone has age at most 𝑅.

𝑇𝑃 +𝑇𝐷 ≤ 𝑛

𝑐𝑝𝑥
+ 𝑛

𝑐𝑏𝑥
=
𝑛

𝑥

2

𝐻 (𝑐𝑏,𝑐𝑝)

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

Zombie Hashing: Reanimating Tombstones in a Graveyard 236:9

Where𝐻 :R2→R is the harmonic mean. Let 𝐸 be the number of empty slots, such that when the

load factor is (1−1/𝑥),
𝑛

𝑥
=𝐸+𝑇𝑃 +𝑇𝐷 =

𝑛

𝑥 ′
+𝑇𝑃 +𝑇𝐷 .

Solving for

𝑥 ′=𝑛/
(𝑛
𝑥
−(𝑇𝑃 +𝑇𝐷)

)
≤𝑛/

(
𝑛

𝑥
−𝑛

𝑥

2

𝐻 (𝑐𝑏,𝑐𝑝)

)
=𝑥

𝐻 (𝑐𝑏,𝑐𝑝)
𝐻 (𝑐𝑏,𝑐𝑝)−2

≤𝑥
min(𝑐𝑏,𝑐𝑝)

min(𝑐𝑏,𝑐𝑝)−2
𝐻 (𝑎,𝑏) ≥min(𝑎,𝑏)

=𝑥
𝑐𝑝

𝑐𝑝−2
if 𝑐𝑏 ≥𝑐𝑝

𝑥 ′ ≤ 3𝑥 When 𝑐𝑝 =3

□

Then following the graveyard hashing analysis [3], DGH can do insertion, query, and deletion

in time𝑂 (𝑥) in expectation:
Lemma3. Consider aDGHhash table running ahoveringworkloadwith load factor 1−1/𝑥 . It rebuilds a
size 𝑐𝑏𝑥 interval after each insertion, and the distance between primitive tombstones is 𝑐𝑝𝑥 . If 𝑐𝑏 =2𝑐𝑝 =6,
then each insertion/query/deletion takes time𝑂 (𝑥) in expectation.
This follows directly from the analysis of graveyard hashing [3]. We outline the main points

here. Since, via Lemma 2 the true load of 1−1/𝑂 (𝑥), then we have𝑂 (𝑥) time complexity for lookup

and delete. The analysis of graveyard insertion requires two conditions: (C1) the age of primitive

tombstones after the insertion index (by its quotient) is half of the total number of primitive tomb-

stones; and (C2) the distance between primitive tombstones is 𝑂 (𝑥). The first condition can be

satisfied by setting 𝑐𝑏 =2𝑐𝑝 in DGH, and the second condition is satisfied by setting 𝑐𝑝 =3. Through

a more complicated analysis, deferred to the full version for space, we can use smaller 𝑐𝑏 for better

performance. We verify that this setting works experimentally in Section 8.

Although the size of each rebuild interval 𝑐𝑏𝑥 is𝑂 (𝑥), the DGH cannot always finish each rebuild

in time𝑂 (𝑥). The rebuilding process may not be able to stop at the end of the interval. An insertion

of a primitive tombstone has to shift everything after it forwards (to the next interval) until a free

slot or another tombstone. Deletion of tombstones has to shift the rest of the cluster backwards if

there are more tombstones to be cleaned than primitive tombstones to be inserted. As discussed in

Section 2.1, the cluster length is𝑂 (𝑥2) in expectation. Factoring in the rebuild cost of insertion, DGH
may requireΘ(𝑥2) time for insertions.

4 Zombie Hashing
To improve the rebuilding performance of DGHwhich we introduced in Section 3, we now describe

ourfirstworking algorithm, zombie hashing (ZH). Thehash table implementation is calledZombieHT

in later sections.

Description of zombie hashing. Just like the DGH, the zombie hash breaks up the rebuilding

process and executes it gradually throughout the rebuild time window. The whole hash table is

divided into 𝑛/(𝑐𝑝𝑥) rebuild intervals, each with 𝑐𝑝𝑥 hash values for some constant 𝑐𝑝 like 3. These

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

236:10 Yuvaraj Chesetti, Benwei Shi, JeffM. Phillips, and Prashant Pandey

intervals will be rebuilt from the first one to the last one and start over. After each insert, one of these

intervals is rebuilt. The rebuilding of an interval inserts one tombstone at each primitive position

(that does not already have one), and pushes all the other tombstones out of the interval. This is the

only difference between zombie hashing (ZH) and DGH; specifically, zombie hashing does not push

extra tombstones all the way to the end of the cluster, it just leaves them at the beginning of the next

rebuild interval. This ensures each rebuild is𝑂 (𝑥) time.

The key idea that enables rebuilding intervals is the idea of pushing tombstones, which are tomb-

stones that have been pushed out of the rebuild interval, but not yet to the end of the cluster. We let

𝑇𝐹 denote their count. We next argue that by leaving these pushing tombstones as pending at the end

of an interval rebuild, we do not break any invariants of the Robin hood hash table. These pushing

tombstones will eventually either reach an empty slot, a primitive position or the end of the cluster

and become free slots. This keeps the tombstones evenly distributed, while pushing extra tombstones

forward. Note that this does not require any assumptions about inserts and deletes being evenly

distributed in zombie hashing. The deamortization schedule will balance the tombstone distribution

by using primitive and pushing tombstones.

The following observation illustrates the key difference between DGH and ZH.

Fact 4. Consider two hash tables DGH and ZH on the same input set, using the same hash function,
and all of the same parameters. One can convert ZH to DGH by cleaning the𝑇𝐹 pushing tombstones in
ZH; or get the status of ZH from DGH by inserting𝑇𝐹 tombstones to DGH at the beginning of the next
rebuild interval. Here inserting a tombstone at 𝑖 means inserting a tombstone with hash value 𝑖 ; if there
is already tombstones with hash value 𝑖 , keep all of them.

Thus to bound the complexity of ZH’s operations, it is important to bound𝑇𝐹 .

Lemma 5. Consider a ZH with 𝑛 slots and load factor of 1−1/𝑥 , rebuild size 𝑐𝑏𝑥 intervals and use 𝑐𝑝𝑥
as the distance between primitive tombstones. If 𝑐𝑏 ≥𝑐𝑝 ≥ 3, then the number of tombstones being pushed
forwards𝑇𝐹 is𝑂 (𝑥) in expectation.
Proof. Let𝐶 be a cluster in DGH, and𝑇𝐷 (𝐶) be the number of tombstones left by deletions in

𝐶 . Obviously, the number of pushing tombstones in a cluster𝐶 satisfies

𝑇𝐹 (𝐶) ≤𝑇𝐷 (𝐶).
Let 𝐿(𝐶) be the length of𝐶 , we have the expected number of non-primitive tombstones in a length

ℓ cluster is

E[𝑇𝐷 (𝐶) |𝐿(𝐶)= ℓ] ≤𝑅ℓ
1

𝑛
=

𝑛

𝑐𝑏𝑥

ℓ

𝑛
=

ℓ

𝑐𝑏𝑥
.

This is because there are at most 𝑅 deletions that can happen between a rebuild cycle, each hash

value in the cluster has 1/𝑛 probability to be a tombstone left by a deletion, and there are ℓ different

hash values in the cluster.

Then we bound the cluster length 𝐿(𝐶). The key observation here is that, when DGH encounters

a free slot, ZH does so also and has 0 pushing tombstones. That is, the clusters after rebuilding are

exactly the same in DGH and ZH.We have shown in Lemma 2 that the load factor of DGH is 1−1/𝑥 ′
where 𝑥 ′=𝑂 (𝑥) if 𝑐𝑏 ≥𝑐𝑝 ≥ 3. Thus the expected length of a cluster is𝑂 (𝑥 ′2)=𝑂 (𝑥2).

Put all the above together, we have the expected number of pushing tombstones is

E[𝑇𝐹]=E𝐿 [E[𝑇𝐹 (𝐶) |𝐿(𝐶)= ℓ]] ≤E𝐿 [E[𝑇𝐷 (𝐶) |𝐿(𝐶)= ℓ]]

=
E[𝐿]
𝑐𝑏𝑥

=
𝑂 (𝑥2)
𝑐𝑏𝑥

=𝑂 (𝑥). □

Finally, we can use Fact 4 to showmost operations on ZH perform exactly the same in DGH, and

the others are off by𝑇𝐹 =𝑂 (𝑥); hence all operations have runtime𝑂 (𝑥) in ZH.

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

Zombie Hashing: Reanimating Tombstones in a Graveyard 236:11

Theorem6 (ZombieHashing). Consider aZombie hash tablewith load factor atmost 1−1/𝑥 . Let𝑐𝑝𝑥 be
thedistance between its primitive tombstones, and let𝑐𝑏𝑥 be the size of the rebuild interval after each inser-
tion. If𝑐𝑏 ≥ 2𝑐𝑝 ≥ 6, then each operation (insertion, query, deletion, or rebulding) takes expected time𝑂 (𝑥).

Proof. Fact 4 tells us that the state of the hash tables for DGH and ZH are almost the same.

And Lemma 3 shows that, if 𝑐𝑏 ≥ 2𝑐𝑝 ≥ 6, for the corresponding DGH, the insert, lookup, or delete

takes time𝑂 (𝑥) in expectation. We define the active cluster as the set of slots which are in the same

cluster as the pushing tombstones under either ZH or DGH. If an operation indexes outside of the

active cluster, then DGH and ZH are the same, and so in ZH the operations also take𝑂 (𝑥) time. For

an operation that indexes in the active cluster, but after the pushing tombstones, then in ZH these

have not been processed in a rebuild yet. However, these intervals must have been rebuilt in the

last 𝑅=𝑛/(𝑐𝑏𝑥) operations. Hence, we can invoke the graveyard analysis, as in DGH, to bound the
expected runtime of any operation to𝑂 (𝑥).
What remains are operations, with home slot (indexed by its quotient) in the active cluster, but

before the pushing tombstones. An insert will behave the same in DGH or ZH before the pushing

tombstones, and if it hits the pushing tombstones in ZH it can insert and stop. So its runtime in ZH

is at most that in DGH, which is𝑂 (𝑥). For a delete or lookup, the operation may need to traverse

the pushing tombstones in ZH, whereas in DGH, the items afterwards would have been shifted

backwards. By the Robin hood invariant, other than shifting backwards, the order of the items does

not change. Thus in ZH these operations may take𝑇𝐹 steps longer than in DGH, and Lemma 5 shows

𝑇𝐹 =𝑂 (𝑥) in expectation. Hence these operations in ZH take𝑂 (𝑥)+𝑂 (𝑥)=𝑂 (𝑥), as desired.
For the rebuild time, if there are pushing tombstones, the rebuild time is asymptotically the rebuild

interval size 𝑐𝑏𝑥 plus the number of pushing tombstones𝑇𝐹 ; both of them are𝑂 (𝑥). Otherwise, the
rebuild may need to insert ⌈ 𝑐𝑏

𝑐𝑝
⌉=𝑂 (1) primitive tombstones, the time is the same as insertion time,

𝑂 (𝑥) again. Therefore the rebuild time is𝑂 (𝑥) in expectation for ZH. □

5 Optimizations for Zombie Hashing
In this section, we describe an optimization to ZombieHT called ZombieHTDelete. This variant does

not introduce newprimitive tombstones. Instead, tombstones are only redistributedwhen introduced

as part of a delete. In this optimization, we do not manage a separate rebuild process. Tombstones are

redistributed in the neighbourhood of the location they are inserted after performing the deletion.

This optimization helps reduce the total number of cache accesses achieves better data locality and

overall efficiency.

For this optimization, we need a mechanism to identify if the new tombstone introduced as part

of a delete is useful (on redistributing reduces insert cost) or an extra tombstone. To do this, we push

this new tombstone to the first primitive tombstone position ahead of it which does not contain a

tombstone. If all the primitive tombstone positions between the deleted item and the next empty

slot already have tombstones, this new tombstone is cleared and removed.

ZombieHTDelete has the advantage of providing more primitive tombstones, which are the use-

ful tombstones that speed up inserts. ZombieHTDelete only has primitive tombstones, which are

bounded by 𝑛/(𝑐𝑝𝑥). To achieve 1−1/(3𝑥) true load factor, ZombieHT needs 𝑐𝑝 ≥ 3 (see Section 4),

but ZombieHTDelete only needs 𝑐𝑝 ≥ 1.5.

We will now prove that the insert cost in ZombieHTDelete is equivalent to the one in ZombieHT.

Consider an insertion of item 𝑣 that uses a primitive tombstone 𝑡 which was inserted during one

of the previous rebuilding processes in ZombieHT. We aim to show that the cost of insertion of 𝑣

in ZombieHTDelete is the same as the combined cost of inserting both 𝑣 and 𝑡 in ZombieHT. All

tombstome intervals (the interval between two consecutive tombstones) can be divided into three

types per the number of pushing tombstones at the end of their rebuilding process: no tombstone

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

236:12 Yuvaraj Chesetti, Benwei Shi, JeffM. Phillips, and Prashant Pandey

index 0 1 2 3 4 5 6 7 8 9
occupieds 0 1 1 0 1 0 0 0 1 0

runends 0 0 1 0 1 0 1 0 0 1
tombstones 1 0 0 0 0 1 0 1 1 0
remainders h(a) h(b) h(c) h(d) ✝ h(e) ✝ h(f)

cluster cluster
run

Fig. 3. Ordered linearprobinghash tablewith tombstones.Colors representdifferent runs.Weuse the tombstone
metadata bit to mark both the tombstone slot and the free slot. Remainders represent the slot in the hash table.

(type 0), exactly 1 tombstone (type 1) and more than one tombstone (type 2). Rebuilding type 0

tombstone intervals using ZombieHTDelete is equivalent to ZombieHT since the cost of clearing

or consuming extra tombstones is paid during an insert in ZombieHTDelete. For type 1 tombstone

intervals, the rebuilding process in ZombieHTDelete is just a slight movement of a tombstone, so

it does not affect performance. For type 2 tombstone intervals, if there are 2 tombstones, the cost

to pushing the extra one is the same in ZombieHT and ZombieHTDelete. The rebuilding process in

ZombieHT is onlymore efficient in the case of havingmore than 2 tombstones asmultiple tombstones

are pushed together, instead of one by one as in ZombieHTDelete.

6 Ordered variant
The implementations of ZombieHT and other ordered linear probing variants in our evaluation

(RobinHoodHT and GraveyardHT) are based on the quotienting [20], a compact hash table design.

6.1 Compact hash table
Quotienting [20] is a technique to compactly store fingerprints in a hash table. It has been used

extensively to compactly store small fingerprints in an approximatemembership query data structure,

such as the quotient filter [40]. The quotient filter stores fingerprints compactly in a hash table using

the Robin hood hashing-based linear probing technique. In the context of the quotient filter, the

fingerprints are lossy and hence the data structure is approximate. However, if the fingerprints are

derived using an invertible hash function [37] then the quotient filter turns into a compact hash table.

In this paper, the quotient filter refers to the hash table variant if not specified otherwise.

In quotienting, a hash valueℎ(𝑎), where (|ℎ(𝑎) |=𝑝 bits) is divided into two parts, the higher order

𝑞 bits ℎ0 (𝑎) is called the quotient, and the lower order 𝑟 bits ℎ1 (𝑎) is called the remainder, where
𝑞+𝑟 =𝑝 is the total number of bits of the hash value. The quotients are used as the indices in the hash

table, and only the remainders are stored in the hash table. So an invertible hash function is needed

to recover the key from the hash value and make sure that there is no hash collision. ZombieHT

supports 64-bit keys, which is most common data type in hash tables. To support arbitrary-size string

keys, we can use indirection as used in existing hash tables [2].

The quotient filter (QF) [40] uses two, size 𝑛 binary arrays to store the metadata, occupieds [𝑂𝑖]𝑛𝑖=1,
and runends [𝑅𝑖]𝑛𝑖=1.𝑂𝑖 is set if and only if there exists a run whose quotient is 𝑖 . 𝑅𝑖 is set if and only if

there exists a run end at 𝑖 . One can quickly find a run performing rank/select operations on occupieds

and runends bit vectors. For example, in Figure 3, if we want to find the run of quotient 4, we first do

rank(4) on occupieds to get the number of set bits until 4, which is 3; then do select(3) on runends to

get the end of the run, which is 6. To find the start of the run, we first find the end of the previous run.

The start of the run is then the maximum of the previous run end plus 1 and the quotient.

Let 𝑍 be the information-theoretical lower bound of space to store a certain amount of data in

the worst case (max entropy). The data structure used to store the data is compact if it uses𝑂 (𝑍)

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

Zombie Hashing: Reanimating Tombstones in a Graveyard 236:13

space. For a size𝑛 set of elements from universe [𝑢],𝑍𝑠𝑒𝑡 (𝑢,𝑛)= log
(
𝑢
𝑛

)
, because there are

(
𝑢
𝑛

)
possible

different such sets.

The quotient filter (QF) is compact because its space for 𝑛 keys is𝑂 (𝑛𝑟), which is𝑂 (𝑍𝑠𝑒𝑡 (𝑢,𝑛)),
because

𝑛𝑟 =𝑛(log𝑢−log𝑛)=𝑛log𝑢
𝑛
≤ log

(
𝑢

𝑛

)
6.2 QFwith Tombstones
To introduce tombstones, we extend theQFmetadata and add another binary array tombstones [𝑇𝑖]𝑛𝑖=1.
𝑇𝑖 is set if and only if slot 𝑖 is available. So we do not just set it for tombstones, but also for empty

slots. Thus, we can quickly find an available spot during insertion by a mask and a select operation

on the tombstones bit vector.

For example, see Figure 3, to make space to insert 𝑔 between 𝑎 and 𝑏, we need to find the first

available slot after 𝑎. With tombstones metadata, we can mask all bits until 𝑎 and do a select(1) on

tombstones to get the first available slot, which is 5. Then we shift everything between 𝑎 and 5 one

slot to the right, and insert 𝑔 after 𝑎.

We further improve the quotient filter (QF) by using block offsets more efficiently. In the original

QF design, the remainders and two metadata bits are grouped into blocks of size 64, and each block

stores a block offset — the number of slots that have overflowed from the previous block. This allows

rank/select operations to be limited to the current or nearby blocks, avoiding scans over the entire

array. However, at high load factors, this offset can become too large to fit in an 8-bit integer, caus-

ing buffer overflows and degrading performance. The original QF handles this by linearly probing

subsequent blocks until one with a non-overflowing offset is found.

Instead, we redefine the block offset as the difference between the number of occupied entries

and the number of runend markers before the current block — effectively counting the number of

runs overflowing from the previous block, rather than the number of overflowed slots. This value

is significantly smaller and fits within an 8-bit integer in almost all cases, eliminating the overflow

issue and improving performance.

6.3 Zombie hashing rebuilds
Nowwe describe the rebuilds of zombie hashing in detail.

As we mentioned in Section 4, we divide the hash table into size 𝑐𝑏𝑥 intervals, and rebuild one

interval at a time from the first one to the last one. For the 𝑗th rebuild, the rebuild interval is [𝑠,𝑒),
where 𝑠 = 𝑗𝑐𝑏𝑥 and 𝑒 = 𝑗𝑐𝑏𝑥+𝑐𝑏𝑥 . The rebuild process first finds the run start using quotient 𝑠 . If there
is no such run, it will be the next existing run. For each quotient 𝑖 <𝑒 , do the following,

• if 𝑖 is a primitive tombstone position (i.e. 𝑖%(𝑐𝑝𝑥)=0),
– if there are some pushing tombstones, leave one tombstone at the beginning of the run,

– otherwise insert a new tombstone at the beginning of the run

• collect all tombstones in the run and push them out of the run. If the next run is empty or has its

quotient equal to the index, the pushing tombstones are converted to empty slots.

• find the next existing run.

Figure 4 demonstrates a simple example with 𝑐𝑝𝑥 =2 and 𝑐𝑏𝑥 =4.

7 Unordered variant
We also implement the deamortized zombie hashing technique in an unordered linear probing hash

table called AbslHT [14]. AbslHT is a vectorized quadratic probing hash table from Google [14]. In

vectorized design, the hash table is partitioned into blocks and each block is operated on by vector

instructions. However, if the blocks are viewed as a consecutive series of slots, the Zombie hashing

paradigm can be applied.

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

236:14 Yuvaraj Chesetti, Benwei Shi, JeffM. Phillips, and Prashant Pandey

index 0✝ 1 2✝ 3 4✝ 5 6✝ 7 8✝ 9
remainders h(a) ✝ ✝ h(c) h(d) ✝ h(e) h(f)

(a) ZombieHT with primitive tombstone slots marked. 𝑐𝑝𝑥 =2, every second slot is a primitive tombstone slot.

h(a) ✝ h(c) h(d) ✝ ✝ h(e) h(f)

index 0✝ 1 2✝ 3 4✝ 5 6✝ 7 8✝ 9
remainders h(a) ✝ ✝ h(c) h(d) ✝ h(e) h(f)

(b) First rebuild step with rebuild interval [0,3] (𝑐𝑏𝑥 =4). One primitive tombstone (red) is left at the start of
run 2, while the extra tombstone (blue) is pushed until it reaches run 4.

index 0✝ 1 2✝ 3 4✝ 5 6✝ 7 8✝ 9
remainders h(a) ✝ h(c) h(d) ✝ ✝ h(e) h(f)

h(a) ✝ h(c) h(d) ✝ h(e) h(f)

(c) Second rebuild step for runs [4,7]. One primitive tombstone (red) is left at start of run 4. Here, the extra
push tombstone (blue) is moved to slot 7 and converted to an empty slot.

index 0✝ 1 2✝ 3 4✝ 5 6✝ 7 8✝ 9
remainders h(a) ✝ h(c) h(d) ✝ h(e) h(f)

h(a) ✝ h(c) h(d) ✝ h(e) ✝ h(f)

(d) Third rebuild step for runs [8,9]. As there are no existing tombstones to use, an extra tombstone is introduced
for run 8.

Fig. 4. Demonstration of ZombieHT rebuild with 𝑐𝑏𝑥 =4 (rebuild window) and 𝑐𝑝𝑥 =2 (primitive tombstone
distance). We omit metadata bits in these figures andmark slots and corresponding home indexes with the
same color. In ZombieHT, the rebuild steps happen in conjunction with inserts and deletes, but here we only
show the rebuild steps.

AbslHT uses tombstones to support fast deletes. However, similar to other tombstone-based hash

tables, it periodically stops to clear tombstones in order to maintain high throughput. To overcome

the periodic down times, we first implement a linear-probing variant in AbslHT while preserving

the vectorized execution and original performance. We then implement deamortization using the

zombie hashing technique to achieve consistent high throughput with no downtime.

7.1 AbslHT design
The reference AbslHT implementation is an open addressing hash table and uses quadratic probing

along with vectorized instructions to quickly probe long chains [50].

Data layout. Items in AbslHT are stored inline continuously in an array. A separate metadata array

stores one fingerprint per item in the metadata array. These fingerprints indicate the status of the

slot (empty, deleted or filled). The metadata array in conjunction with Streaming SIMD Extension

(SSE) [56] instruction set is used to speed up lookup of elements, which is described in more detail

below.

Fingerprints. The fingerprints in the metadata array can have 3 states - empty, deleted (a tombstone

marker for deleted items) or full. The first bit of the fingerprint is used to differentiate between

non-full slots (i.e. empty or deleted) and full slots. For full slots, the last 7 bits of the the fingerprint

are filled with the last 7 bits of the hash of the item, which is the fingerprint of the item.

Probe Sequences and groups.The first 57 bits of the hash are used to define a probe sequence for an
element. Slots in AbslHT are always probed in groups, which are contiguous chunks consisting of 𝑘

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

Zombie Hashing: Reanimating Tombstones in a Graveyard 236:15

probe probe 1(h(q)) probe 2 (h(q)+4)
query mask f(q) f(q) f(q) f(q) f(q) f(q) f(q) f(q)
fingerprint f(a) ✝ f(b) f(c) f(d) f(q) ✝ f(e)

elements a ✝ b c d q ✝ e

q h(q) f(q)

group 1 group 2

Fig. 5. Unordered linear probing design in AbslHT. Given a query q, it is first hashed to a slot where the probing
starts and a 8-byte fingerprint. First, a fingerprint match is performed in the group starting at the hashed slot.
If a fingerprint match is found the corresponding slot in the table is compared with the full key. Otherwise, the
sameprocess is followed in the next group. The probe stops if the key is found or there is an empty slot in a group.

slots. If a probe sequence for an element is [𝑝1,𝑝2,𝑝3 ...], then the actual slots checked for in this probe
sequence are the slots in the groups [(𝑝1,𝑝1+1,...𝑝1+ (𝑘−1)),(𝑝2,...𝑝2+ (𝑘−1)),...]. The reference
implementation of AbslHT uses a quadratic probing sequence, where 𝑝𝑖 = (ℎ(𝑎) +𝑘 ∗ (𝑖2 + 𝑖)/2)
(mod 𝑛). The size 𝑘 of a group is determined by the width of the vector instruction a machine allows.

For a machine that has the 128-byte wide extension, a group width of 𝑘 =16 is used.

Lookup.Using groups alongwith fingerprints in themetadata array allows AbslHT to quickly probe

long probe sequences using vector instructions. The fingerprints in the metadata array are used to

quickly find candidate slots in a group that might contain the item. Each fingerprint consists of a

control bit (empty or not) and the last 7 hash bits of the item (if the slot is not empty). To find candidate

slots, AbslHT constructs a query fingerprint consisting of a set control bit and the last 7 hash bits

of the query item. A single vector instruction then finds slots in the group with a fingerprint that

matches the query fingerprint. Since the control bit is set, empty slots are ignored when searching

for candidate slots. The probe ends if the queried item is found in any of the candidate slots. If the

item is not found, the probe ends if the group contains empty slots. Otherwise, the probe continues

to the next group in the probe sequence. For a running example, please refer to Figure 5.

Inserts and deletes. Inserts first perform a lookup to check if the item already exists in the table.

If the item does not exist, the probe is restarted to find the first empty or deleted slot. Deletes proceed

in a similar fashion to lookups. If the item exists, the corresponding fingerprint of the slot is updated

with a tombstone to mark the slot as a deleted slot.

Rebuilds.When the actual load factor (the load factor including tombstone slots) goes beyond 87.5%,

AbslHT decides between resizing to a new table of twice the capacity or removing all tombstones.

The tombstones are cleared if the fraction of tombstones in the occupied slots is greater than 3/32,
which is an empirically determined factor. Otherwise, the hash table is resized to double the capacity.

7.2 Deamortized rebuilds in AbslHT

Probing sequence. To enable deamortized rebuilding, we change the probing sequence function

used in default AbslHT from 𝑝𝑖 = (ℎ(𝑎) + 𝑘 ∗ (𝑖2 + 𝑖)/2) (mod 𝑛) to a linear-probing sequence

𝑝𝑖 = (ℎ(𝑎)+𝑘∗𝑖) (mod 𝑛).
Deamortized rebuild schedule.As AbslHT uses unordered linear probing, the rebuild algorithm is

slightly different compared to ZombieHT. Instead of rebuilding by pushing tombstones across fixed

intervals of size𝑐𝑏𝑥 ,we rebuildby rehashingall items ina cluster (all items inbetween twoconsecutive

empty slots) in place.Wedo this bykeeping trackof the last slot thatwas rebuilt 𝑙 and the target rebuild

size𝑡 . The target rebuild is incrementedby𝑐𝑏𝑥 onevery insert, i.e. by inserting 𝑗 ,weshouldhaverebuilt

at least until slot 𝑗𝑐𝑏𝑥 . If 𝑡 < 𝑙 , the deamortized rebuilding is behind the schedule, triggering a rebuild

of the next cluster after 𝑡 and updating 𝑡 . In the actual implementation, both 𝑡 and 𝑙 must handle wrap

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

236:16 Yuvaraj Chesetti, Benwei Shi, JeffM. Phillips, and Prashant Pandey

Hash table Consistency Space efficiency Data locality

ZombieHT (This paper) ✓ ✓ ✓
RobinHoodHT [5] ✓ ✓
GraveyardHT [3] ✓ ✓

CLHT [9] ✓
AbslHT [14] ✓

IcebergHT [38] ✓

Table 2. Hash table performance

aroundwhen the endof thehash table is reached.Weonly trigger rebuilding inadeamortized schedule

if the current true load factor (load factor including elements and tombstones) is greater than 87.5%.

Primitive tombstones. Unlike the quotienting implementation of ZombieHT which orders run by

their hash value, the ZombieHTversion based onAbslHTuses unordered linear probing.Whilewe do

use a deamortized rebuild schedule, we do not introduce primitive tombstones. Introducing primitive

(or artificial) tombstones in unordered linear probing has a negative effect on the performance.

This is in contrast to ordered linear probing, where the lookup can exit early because items are

ordered. Intuitively, in ordered linear probing, tombstones and empty slots are almost equivalent

when probing for an item — empty slots are essentially tombstones at the end of a run. In unordered

linear probing, empty slots are muchmore valuable than tombstones. This is because empty slots

are the only mechanism to end a probe.

8 Experiments
In this section, we evaluate the performance of our Zombie hashing scheme.We evaluate our hash

tables on space-efficiency, throughput (number of operations per second) and latency
1
(time taken

by individual operations) distribution. Our experiments aim to simulate real-world aging workloads

where hash tables are maintained at high load factors and go through multiple churn cycles. Specif-
ically, we fill the hash table to 95% load factor and performmultiple cycles of insertions, deletions

and query operations. We run aging experiments with varying read-write ratios at high-load factors.

Finally, we also evaluate the overhead of rebalancing tombstones when the hash table is not full by

comparing the throughput of hash tables when going from empty to full (95% load factor).

There are two major linear probing variants, ordered and unordered. We implement Zombie

hashing scheme in both linear probing variants. The ordered variant is also known as Robin hood

hashing. We implement the Robin hood hashing variant as a compact hash table ZombieHT(C)
using quotienting [40] as this one of most commonly used linear probing variant due its high space

efficiency [37, 39, 41–43]. We compare ZombieHT(C) against three other ordered-linear probing

hashing tables schemes, Robin hood hashing with and without tombstones and graveyard hash-

ing [3]. Our code is available as an open source repository
2
. We implement the unordered variant

ZombieHT(V) using AbslHT [14], a state-of-the-art vectorized hash table fromGoogle.We compare

ZombieHT(V) against three state-of-the-art hash tables, AbslHT [14], CLHT [9] and IcebergHT [38].

Ordered linear probing variants. To ensure a fair comparison of various tombstone rebuild

strategies, we implement ZombieHT(C) and all other ordered linear probing variants using the

quotienting technique, which is described in Section 6. Therefore, the only difference in performance

arises from the choice of the tombstone distribution strategy. All ordered linear-probing variants

are implemented as a hash set storing 64 bit keys.

1
Latency is measured as time to complete 50 operations instead of 1 operation to reduce the noise.

2
https://github.com/saltsystemslab/ZombieHT

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

Zombie Hashing: Reanimating Tombstones in a Graveyard 236:17

• RobinHoodHT does not use tombstones. It performs immediate compaction of elements after

deletion.

• TombstoneHT is the RobinHoodHTwith tombstones on deletes. However, there is no explicit

redistribution of deletes.

• GraveyardHT use tombstones for deletes and periodically (𝑛/(4𝑥)) clears and redistributes

tombstones across the entire hash table.

• ZombieHT(C) is the deamortized GraveyardHTwe introduced in Section 4. In this implemen-

tation, we use 𝑐𝑏 =1.0,𝑐𝑝 =3.0, and call redistribution following each insert operation. We choose

these parameters based on theoretical and experimental evaluation (Section 8.3).

Unordered linear probing variants.We compare our unordered variants ZombieHT(V) with

other state-of-the-art hash tables, including both chaining and open-addressing hash tables. Tomake

the comparison fair, specific modifications were made for individual hash tables which are described

below.

• ZombieHT(V) is an unordered linear probing variantwith an implementation based off ofAbslHT.

ZombieHT(V) deamoritzes clearing of tombstones. ZombieHT(V), like AbslHT is vectorized to

speed up lookups.

• AbslHT is a quadratic probing-based hash table and uses tombstones.We disable AbslHT’s default

behavior of resizing (or rehashing) when the load factor exceeds 87.5% true load factor. Instead,

we disable resizing and configure AbslHT to rehash when the true load factor
3
reaches 97.5%.

• CLHT is a chaining based hash table. For CLHT, we use the CLHT_LB variant which uses linked

list andno resizing.CLHTallocates a bucket size of 3 for eachnode in the linked list.We setupCLHT

with 𝑛/4 slots to ensure that CLHT operates under comparable space usage as other hash tables.

• IcebergHT is a hierarchical hash table with three levels. The first level uses single hashing, second

level uses two-choice hashing, and the last level is a chaining hash table. It is specifically designed

to be space efficient, stable, and supports low associativity.

• CuckooHT is a hash table based on cuckoo hashing[36]. We use libcuckoo[24] as the reference

implementation for CuckooHT. Rebuilding is disabled by preallocating the required space.

8.1 Results summary
Across various experiments, we find that Zombie hashing variants achieve themost consistent perfor-

mance (lowest latency variance) compared to other state-of-the-art hash tables. At high load-factors

(95%), among ordered linear probing hash tables, ZombieHT(C) achieves the highest throughput

(2.81M 𝑜𝑝𝑠/𝑠); this improves upon other ordered linear-probing hash table schemes which also incur

periodic down times such as graveyard hashing (1.82M𝑜𝑝𝑠/𝑠) and Robin hood hashing (0.96M𝑜𝑝𝑠/𝑠).
For unordered linear probing variants, ZombieHT(V)’s max latency (140 𝜇𝑠) is an ordermagnitude

lower compared to AbslHT’s (1.3 sec). The standard-deviation in insert performance is similarly low

at 7.31 𝜇𝑠 , compared to AbslHT 2965.62 𝜇𝑠 . The tradeoff for stable performance is a slightly lower

average throughput (-18%) compared to base AbslHT implementation based on quadratic probing.

Hash table performance.Other than the pure throughput of hash table operations, three features
dominate the decision of which hash table to use for a particular application. Table 2 lists these three

features for the state-of-the-art hash tables.

Consistency means the hash table can consistently provide high throughput at high load factor

without any interruption in regular operations. RobinHoodHT does not need rebuilds, but its perfor-

mance deteriorates significantly (bringing it to almost a halt) at high load factors. Both GraveyardHT

and AbslHT rely on rebuilds to maintain their performance. CLHT and IcebergHT do not need

rebuilds and thus can offer consistent performance.

3
The true load factor ratio of the sum of occupied slots and tombstones to the number of slots in the hash table.

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

236:18 Yuvaraj Chesetti, Benwei Shi, JeffM. Phillips, and Prashant Pandey

ZombieHT(C) GraveyardHT RobinHoodHT TombstoneHT

0 100 200 300

0

2

4

Churn Cycle

T
h
ro
u
g
h
p
u
t
(M

O
p
s/
s)

(a) 50% updates and 50% queries.

1,500 1,600 1,700 1,800

0

2

4

Churn Cycle

T
h
ro
u
g
h
p
u
t
(M

O
p
s/
s)

(b) 5% updates and 95% queries.

Fig. 6. Overall throughput of ZombieHT(C) compared to other linear probing variants for churn experiments.
Note: In Figure 6b we run the experiment for 1800 cycles but only plot the throughput for the last 300 cycles
for brevity.

Throughput (𝑀𝑜𝑝𝑠/𝑠𝑒𝑐)

HashMap Load Phase

50% Updates

50% Lookup

5% Updates

95% Lookup

ZombieHT 7.01 2.81 5.06

GraveyardHT 6.21 1.82 4.57

RobinHoodHT 7.58 0.96 4.07

TombstoneHT (★) 7.58 3.59 4.95

Table 3. Average throughput in the load and churn phase (for various read-write ratios). (★) TombstoneHT
values are before it runs out of memory and dies.

Space efficiency means the hash table is compact, asymptotically matching the information-

theoretic low bound (see Section 6.2). All linear probing variants can be implemented using a compact

hash table design to achieve near-information-theoretic levels of space efficiency. However, CLHT,

AbslHT, and IcebergHT have high overheads and do not achieve high space efficiency.

Data locality means required data for each operation can be loaded within a few contiguous

cache lines (or blocks for file based). CLHT is chaining based and has poor data locality. IcebergHT

has 3 level hashes and requires a few random cache line accesses. AbslHT also requires multiple

random cache line accesses at high load factors.

Only ZombieHT achieves all three features: consistency, space efficiency, and data locality
and can be the go-to hash table inmany applications including databases, caching, storage,
etc.

8.2 Experimental setup

Workloads.Our workloads are based on YCSB [8]. They are divided into two phases: load and run

(churn). In the load phase, we initialize all hash tables to 95% load factor. As mentioned in Section 2,

we use 1−1/𝑥 for load factor, so 𝑥 =20 when the load factor is 95%. All the hash tables are setup with

2
27
slots. Keys are 64 bits and are generated from a uniform-random distribution.

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

Zombie Hashing: Reanimating Tombstones in a Graveyard 236:19

ZombieHT(C) GraveyardHT RobinHoodHT TombstoneHT

0 100 200 300
0

2

4

6

8

Churn Cycle

T
h
ro
u
g
h
p
u
t
(M

O
p
s/
s)

75% load factor

(a) 5% updates and 95% queries

0 100 200 300

Churn Cycle

75% load factor

(b) 50% updates and 50% queries

0 100 200 300
0

2

4

6

8

Churn Cycle

T
h
ro
u
g
h
p
u
t
(M

O
p
s/
s)

85% load factor

(c) 5% updates and 95% queries

0 100 200 300

Churn Cycle

85% load factor

(d) 50% updates and 50% queries

Fig. 7. Overall throughput of ordered linear probing tables when operating 75% and 85% lower load factors.

In the churn phase, operations are divided into a series of churn cycles, where each churn cycle

performs a total of 5% of 𝑛 (total slots in the hash table) operations. Each churn cycle first performs

a sequence of delete operations, then inserts new keys and finally performs a series of lookup oper-

ations. Deletion and lookup keys are picked uniformly at random from keys in the hash table, while

insertion keys are picked uniform randomly from the universe – this models a uniform hash function.
Similar to YCSB [8], we generate two churn workloads by varying the ratio of number of update and

lookup operations (50:50 YCSB-A, and 5:95 YCSB-B).

System specification. All the experiments were run on an Intel(R) Xeon(R) Gold 6338 CPU @

2.00GHz with two NUMA nodes, 32 cores per nodes, and 48MB L3 cache per node. The machine has

1TB of DRAM running Linux kernel 5.4.0-155-generic.

8.3 Ordered linear probing
Figure 6 plots the throughput of various ordered hash tables in our churn experiments for different

read-write ratios, while Figure 10 plot the microbenchmarks validating our theoretical results Sec-

tion 4 and parameter study for ZombieHT(C).

Throughput. Figure 6 andTable 3 show theperformance ofZombieHT(C) compared to other ordered

linear probing tombstone redistribution strategies on the churn workloads of varying read-write

ratios. Among all the linear probing variants, ZombieHT(C) achieves the highest overall throughput

(2.81M 𝑜𝑝𝑠/𝑠 on the 50%-50% workload) without periodic drops in throughput.

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

236:20 Yuvaraj Chesetti, Benwei Shi, JeffM. Phillips, and Prashant Pandey

ZombieHT(V) AbslHT IcebergHT

CLHT CuckooHT

0 100 200 300
2

4

6

8

10

12

Churn Cycle

T
h
ro
u
g
h
p
u
t
(M

O
p
s/
s)

(a) 50% updates and 50% queries.

0 100 200 300

5

10

15

Churn Cycle

T
h
ro
u
g
h
p
u
t
(M

O
p
s/
s)

(b) 5% updates and 95% queries.

Fig. 8. Performance of ZombieHT(V) and other hash tables under different read-write ratios.

For the 50%-50% read-write workload, RobinHoodHT has the lowest overall throughput (0.96M

𝑜𝑝𝑠/𝑠) because of primary clustering. TombstoneHT starts out with a higher overall throughput

(3.59M 𝑜𝑝𝑠/𝑠) but eventually runs out of space due to accumulation of tombstones, showing that

redistribution of tombstones is necessary. GraveyardHT avoids running out of space with a slightly

lowered throughput (1.82M 𝑜𝑝𝑠/𝑠) compared to TombstoneHT, but suffers from periodic drops in

overall throughput with a standard deviation of 9862.98𝜇𝑠 .

Figure 7 shows the throughput for the churn workload at 75% and 85% load factors. At lower load

factors, primary clustering is less noticeable. For the read-heavyworkload (5% updates, 95% lookups),

RobinHoodHT achieves the highest throughput due to shorter runs as there are no tombstones

and minimal impact from primary clustering on updates. However, at 85% load, update throughput

decreases as primary clustering becomes more significant.

Latency Distribution. Table 5 records the latency distribution of individual hash table operations
during the churn cycle experiment, averaged across all workloads. For inserts, ZombieHT has a

max latency that is roughly 3000× lower than GraveyardHT, and has a much lower standard devi-

ation (7.57𝜇𝑠) compared to GraveyardHT (10049.82𝜇𝑠). The extremely high standard deviation in

GraveyardHT shows how rebuilding severely affects tail latency. The max latency in GraveyardHT

is not an outlier, but an unavoidable cost that repeatedly shows up by design. The tradeoff is that

deamortized redistribution in ZombieHT results in higher median latency (1.6×) than GraveyardHT.

ZombieHT redistributes during inserts only. Its median latency is 1.5× lower than RobinHoodHT

on inserts. On deletes, the gains are higher with median latency 16× lower. The latency distribution

for TombstoneHT is better than ZombieHT only on inserts, but is not sustainable as it soon runs out

of space. RobinHoodHT has the best median lookup latency, but the absolute gains are very minimal

(2𝜇𝑠 faster for 50 operations).

Load phase throughput.Table 3 also shows the aggregate throughput of various hash tables during
the load phase. The load phase fills an empty hash table to 95% load factor. Wemeasure the insert

throughput as the load factor of the hash table increases. ZombieHT has similar throughput (7.01M

𝑜𝑝𝑠/𝑠) compared to RobinHoodHT (7.58M 𝑜𝑝𝑠/𝑠) and TombstoneHT (7.58M 𝑜𝑝𝑠/𝑠). During the load
phase, the deamortization schedule kicks in only when the true load factor (tombstones and items)

exceeds 80%.We determine this cutoff threshold empirically by running the churn test at load factors

ranging from 70% to 95%.

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

Zombie Hashing: Reanimating Tombstones in a Graveyard 236:21

Throughput (𝑀𝑜𝑝𝑠/𝑠𝑒𝑐)

HashMap Load Phase

50% Updates

50% Lookup

5% Updates

95% Lookup

ZombieHT(V) 13.41 6.91 13.21

AbslHT 15.67 9.81 15.08

IcebergHT 7.43 6.00 8.75

CLHT 12.68 7.42 12.71

CuckooHT 5.90 3.63 6.54

Table 4. Average throughput in the load and churn phase (for various read-write ratios) of unordered linear
probing tables.

8.4 Unordered linear probing
We now compare the unorderd variant with vectorization ZombieHT(V) against four state-of-the-art

production hash tables.

Update throughput and latency. Figure 8 andTable 5 show the throughput and latency distribution

of hash table operations of ZombieHT(V) and other hash tables. ZombieHT(V) achieves a similar

throughput (6.91M 𝑜𝑝𝑠/𝑠) compared to AbslHT (9.81M 𝑜𝑝𝑠/𝑠) without suffering from the extreme

maximum and standard deviation of latency (140.79𝜇𝑠 , 7.31𝜇𝑠) suffered by AbslHT (1199985.97𝜇𝑠 ,

2695.93𝜇𝑠). CLHT too has a higher max latency (15427.46𝜇𝑠) on inserts, which is incurred when

CLHT needs to allocate more buckets for a slot. IcebergHT does not suffer from having high max

latency (66.68𝜇𝑠), but has lower space efficiency.

Figure 9 shows the throughput of various hash tables at lower load factors. ZombieHT(V) and

AbslHT achieve the highest throughput with excellent space efficiency. On write-heavy workloads,

ZombieHT(V) avoids stopping and rebuilding, while AbslHT doesn’t rebuild on read-heavy work-

loads unless the true load factor exceeds 87.5%, which doesn’t occur during lower-load churn tests.

Load phase throughput. Table 4 lists the throughput of various hash tables in the load phase as
hash tables are filled upto 95% load factor. AbslHT (15.67M 𝑜𝑝𝑠/𝑠) and ZombieHT(V) (13.41M 𝑜𝑝𝑠/𝑠),
being vectorized hash tables have higher throughput compared to other hash tables. AbslHT uses

quadratic probing while ZombieHT(V) uses linear probing. ZombieHT(V) applies a deamortized

rebuilding schedule once the load factor exceeds 87.5%.

8.5 Space efficiency
Space efficiency is the ratio of data size over hash table size. Here the data size is defined as the

information-theoretical lowerbound,which is log

(
𝑢
𝑡

)
bits,where𝑢=264 is theuniverse size, 𝑡 is𝑛 times

load factor 0.95, and 𝑛=227. Table 6 shows the size of the hash table at 95% load factor. As a compact

quotienting-based hash table, ZombieHT uses the lowest space (1.63 GB) among all the other hash

tables with a space efficiency of 92.12%. Note that, ZombieHT is implemented as a hash set, the space

reported above is space ZombieHTwould need as a hash tablewith 64 bit values. CLHThas low space

efficiency and does not achieve a higher space efficiency than 35.66%. CLHT allocates buckets which

are cache aligned to be performant, but all buckets are not always filled. AbslHT, ZombieHT(V) and

IcebergHT are not quotienting-based, and they store the entire key in the slots. CuckooHT is based on

the open-addressing scheme has similar space efficiency, but it is not as performant as ZombieHT(V).

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

236:22 Yuvaraj Chesetti, Benwei Shi, JeffM. Phillips, and Prashant Pandey

ZombieHT(V) AbslHT IcebergHT

CLHT CuckooHT

0 100 200 300
0

5

10

15

20

Churn Cycle

T
h
ro
u
g
h
p
u
t
(M

O
p
s/
s)

75% load factor

(a) 5% updates and 95% queries

0 100 200 300

Churn Cycle

75% load factor

(b) 50% updates and 50% queries

0 100 200 300
0

5

10

15

20

Churn Cycle

T
h
ro
u
g
h
p
u
t
(M

O
p
s/
s)

85% load factor

(c) 5% updates and 95% queries

0 100 200 300

Churn Cycle

85% load factor

(d) 50% updates and 50% queries

Fig. 9. ThroughputofZombieHT(V) andotherhash tables tableswhenoperating75%and85% lower load factors.

8.6 Microbenchmarks
Figure 10 plots various internal statistics that were captured to validate the theoretical results we

show in Section 4. Specifically, we compare the optimizations and configuration parameters to choose

the most practical version of ZombieHT(C). The microbenchmarks run the read heavy workload.

ZombieHT(C) parameters. In Section 4, to simplify the analysis, all the theoretical bounds are

derived with a relative large rebuild interval size 𝑐𝑏𝑥 with 𝑐𝑏 =6. In practice, a smaller 𝑐𝑏 is feasible

although the theoretical analysis is cumbersome. The rebuild interval for ZombieHT can be as small

as polylog(𝑥) as we know that a large rebuild window of 𝑛/polylog(𝑥) provides better performance

than a small rebuild window 𝑛/𝑂 (𝑥) [3] for Robin hood hashing with tombstones. We run exper-

iments with different 𝑐𝑏 and the smaller 𝑐𝑏 gives the best update performance while not hurting the

lookups significantly. Thus, we choose 𝑐𝑏 =1.0 in ZombieHT(C) as the rebuild window size in as our
default value in our evaluations.
The primitive tombstone space parameter 𝑐𝑝 can be tuned according to the workload. A big-

ger 𝑐𝑝 results in better read performance as there as less tombstones at the cost of higher inserts

and conversely write heavy workloads should prefer a smaller 𝑐𝑝 . Unless otherwise stated,we use
ZombieHT(C) with 𝑐𝑝 =3.0 in the experiments.

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

Zombie Hashing: Reanimating Tombstones in a Graveyard 236:23

Insert (𝜇𝑠)

Percentile ZombieHT(C) RobinHoodHT TombstoneHT
★

GraveyardHT ZombieHT(V) AbslHT CLHT IcebergHT CuckooHT

Min 30.33 24.76 16.19 14.59 7.31 5.08 5.40 7.02 16.84

50% 42.43 63.01 25.92 25.00 24.04 8.73 8.03 9.32 36.34

99.99% 188.18 134.68 53.67 52.18 82.12 16.06 8869.38 14.88 66.35

Max 349.90 1700.60 INF 2173487.96 140.79 1308525.04 15427.46 66.68 102.36

Std dev. 7.57 12.42 4.38 9862.98 7.31 2965.62 199.92 0.65 6.15

Deletes (𝜇𝑠)

Percentile ZombieHT(C) RobinHoodHT TombstoneHT
★

GraveyardHT ZombieHT(V) AbslHT CLHT IcebergHT CuckooHT

Min 7.36 36.37 8.24 7.27 2.96 2.92 3.19 6.19 4.36

50% 9.39 133.75 10.60 9.34 4.33 4.22 5.27 8.28 5.59

99.99% 17.57 324.94 19.03 17.76 9.84 9.45 13.11 15.65 13.24

Max 68.04 1848.03 59.41 58.47 71.22 36.29 271.30 56.87 49.35

Std dev. 0.81 34.44 0.88 0.79 0.61 0.58 1.03 0.72 0.56

Lookup (𝜇𝑠)

Percentile ZombieHT(C) RobinHoodHT TombstoneHT
★

GraveyardHT ZombieHT(V) AbslHT CLHT IcebergHT CuckooHT

Min 6.66 5.28 7.25 6.54 2.23 2.16 2.65 4.06 4.39

50% 8.52 7.00 9.45 8.42 3.36 3.27 4.24 5.68 6.83

99.99% 13.43 13.39 19.87 13.91 7.61 7.63 9.53 10.66 12.42

Max 74.74 1622.36 1652.95 70.25 70.03 73.84 272.79 72.58 72.30

Std dev. 0.56 1.13 1.24 0.55 0.41 0.38 0.70 0.49 0.67

Table 5. Latency distribution of various hash table operations collected over 100 churn cycles. Latency is
measured as the time taken to complete 50 operations. TombstoneHT★ did not finish the churn experiment
(max insert latency is infinity).

Hash table Size Space efficiency

ZombieHT(C) 1.63 GB 92.12%

CuckooHT 2.00 GB 74.96%

ZombieHT(V) 2.13 GB 70.55%

AbslHT 2.13 GB 70.55%

IcebergHT 2.39 GB 62.71%

CLHT 4.20 GB 35.66%

Table 6. Space efficiency of various hash tables at 95% load factor. Hash tables are configured to have 𝑁 =227

slots.

ZombieHT(C) vs ZombieHTDelete. Figure 11 also compares the overall performance on the churn

workloadof twoZombieHTvariants (the default uses𝑐𝑏 =1.0,while the variant uses𝑐𝑏 =3.0) andZom-

bieHTDelete optimization introduced in Section 5. TheZombieHTDelete achieves similar throughput

to ZombieHT(C), however without that the theoretical guarantees that ZombieHT(C) provides.

HomeSlot and tombstonedistancedistribution.Figure 10a andFigure 10bplot the distributionof
the distances of slot items to their (1) home slot and (2) nearest available (tombstone or free slot) after

100 churn cycles respectively. Note the log-scale on the y-axis. Higher home slot distance corresponds

to worse lookup performance, which explains why ordered linear probing variants with tombstones

have a slightly higher median lookup latency. Notably, because TombstoneHT does not manage its

tombstones, elements drift further and further away from their home slot with more operations are

performed and eventually runs out of space. A high available slot distance implies that the more

items must be shifted to do an insert (and deletes in RobinHoodHT) operation. From Figure 10b, it

can be seen that cluster sizes in RobinHoodHT can be as high as 12000 because of not having the anti-

clustering properties of tombstones. ZombieHT(C) achieves roughly the same latency distribution as

GraveyardHT, but with the above discussed advantages of lower variance and improved throughput.

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

236:24 Yuvaraj Chesetti, Benwei Shi, JeffM. Phillips, and Prashant Pandey

ZombieHT(C) GraveyardHT RobinHoodHT TombstoneHT

0 100 200 300

100

105

Distance

C
o
u
n
t

(a) Distance from home slot

0 5,000 10,000

100

105

Distance

C
o
u
n
t

(b) Distance to available slot

Fig. 10. Hash table microbenchmarks. Higher distance between home slot to next nearest available slot key
corresponds to worse insert performance.

0 50 100 150 200
0

2

4

Churn cycle

T
h
ro
u
g
h
p
u
t
(M

O
p
s/
s)

ZombieHT ZombieHT(Cb = 3.0) ZombieHTDelete

Fig. 11. Evaluating rebuild interval size(𝐶𝑏) and tombstone space distance (𝐶𝑝) parameters for ZombieHT(C),
and comparing against ZombieHTDelete.

9 Discussion &Conclusion
In this paper, we develop a new hashing scheme (Zombie hashing) that achieves consistent high

throughput, high space efficiency, and high data locality for real-world workloads for hundreds for

churn cycles. We design a novel deamortization scheme and prove theoretical bounds that each

operation always operates with low, bounded cost,Θ(𝑥), where 1−1/𝑥 is the load factor, resulting

in consistent performance. ZombieHT is an ideal candidate for applications that require strong con-

sistent performance guarantees and are constrained on space. Thus ZombieHT is suited to accelerate

large-scale data processing (OLTP) which benefit from high data locality.

Other modern hash tables, such as IcebergHT achieve consistent high throughput and can be the

appropriate choice in many applications; however, they do not achieve high space efficiency and

may not be the right choice in applications where memory is scarce. Furthermore, IcebergHT gives

up on data locality and hash ordering which is a critical feature in many data analysis systems to

quickly compute hash table joins and merges.

Acknowledgments
This research is funded in part by NSF grant OAC 2339521 and III 2311954.

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

Zombie Hashing: Reanimating Tombstones in a Graveyard 236:25

References
[1] Rizwan A. Ashraf, Roberto Gioiosa, Gokcen Kestor, Ronald F. DeMara, Chen-Yong Cher, and Pradip Bose. 2015.

Understanding the propagation of transient errors in HPC applications. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. ACM, Austin Texas, 1–12. doi:10.1145/2807591.2807670

[2] Michael A. Bender, Alex Conway, Martin Farach-Colton, William Kuszmaul, and Guido Tagliavini. 2023. Iceberg

Hashing: Optimizing Many Hash-Table Criteria at Once. J. ACM 70, 6 (2023), 40:1–40:51. doi:10.1145/3625817

[3] Michael A. Bender, Bradley C. Kuszmaul, andWilliam Kuszmaul. 2021. Linear Probing Revisited: Tombstones Mark

the Demise of Primary Clustering. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021,
Denver, CO, USA, February 7-10, 2022. IEEE, 1171–1182. doi:10.1109/FOCS52979.2021.00115

[4] Jose Nelson Perez Castillo, Miguel Gutierrez, and Nelson Enrique Vera Parra. 2016. Computational Performance

Assessment of k-mer Counting Algorithms. J. Comput. Biol. 23, 4 (2016), 248–255. doi:10.1089/CMB.2015.0199

[5] Pedro Celis, Per-Åke Larson, and J. Ian Munro. 1985. Robin Hood Hashing (Preliminary Report). In 26th Annual
Symposium on Foundations of Computer Science, Portland, Oregon, USA, 21-23 October 1985. IEEE Computer Society,

281–288. doi:10.1109/SFCS.1985.48

[6] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin J. Levandoski, James Hunter, and Mike Barnett. 2018.

FASTER: A Concurrent Key-Value Store with In-Place Updates. In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, Gautam Das, Christopher M.

Jermaine, and Philip A. Bernstein (Eds.). ACM, 275–290. doi:10.1145/3183713.3196898

[7] John G. Cleary. 1984. Compact Hash Tables Using Bidirectional Linear Probing. IEEE Trans. Computers 33, 9 (1984),
828–834. doi:10.1109/TC.1984.1676499

[8] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking cloud

serving systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing (Indianapolis, Indiana, USA)
(SoCC ’10). Association for Computing Machinery, New York, NY, USA, 143–154. doi:10.1145/1807128.1807152

[9] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2015. Asynchronized Concurrency: The Secret to Scaling

Concurrent Search Data Structures. In Proceedings of the Twentieth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2015, Istanbul, Turkey, March 14-18, 2015, Özcan Özturk,
Kemal Ebcioglu, and Sandhya Dwarkadas (Eds.). ACM, 631–644. doi:10.1145/2694344.2694359

[10] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro, Michael Stonebraker, and David A. Wood. 1984.

Implementation Techniques for Main Memory Database Systems. In SIGMOD’84, Proceedings of Annual Meeting, Boston,
Massachusetts, USA, June 18-21, 1984, Beatrice Yormark (Ed.). ACM Press, 1–8. doi:10.1145/602259.602261

[11] DynamoDB 2024. https://aws.amazon.com/dynamodb/. Accessed: 2024-10-06.

[12] Bin Fan, David G. Andersen, and Michael Kaminsky. 2013. MemC3: Compact and Concurrent MemCache with

Dumber Caching and Smarter Hashing. In Proceedings of the 10th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2013, Lombard, IL, USA, April 2-5, 2013, Nick Feamster and Jeffrey C. Mogul (Eds.). USENIX

Association, 371–384. https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan

[13] H. Garcia-Molina and K. Salem. 1992. Main memory database systems: an overview. IEEE Transactions on Knowledge and
Data Engineering 4, 6 (Dec. 1992), 509–516. doi:10.1109/69.180602 Conference Name: IEEE Transactions on Knowledge

and Data Engineering.

[14] Google. 2024. Abseil / Abseil Containers. https://abseil.io/docs/cpp/guides/container, Last accessed 2024-10-06.

[15] Philipp M. Grulich, Sebastian Breß, Steffen Zeuch, Jonas Traub, Janis von Bleichert, Zongxiong Chen, Tilmann Rabl,

and Volker Markl. 2020. Grizzly: Efficient Stream Processing Through Adaptive Query Compilation. In Proceedings of the
2020 International Conference on Management of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA],
June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q.

Ngo (Eds.). ACM, 2487–2503. doi:10.1145/3318464.3389739

[16] F. Robert A. Hopgood and James H. Davenport. 1972. The quadratic hash method when the table size is a power of

2. Comput. J. 15, 4 (1972), 314–315. doi:10.1093/COMJNL/15.4.314

[17] Rosa M. Jiménez and ConradoMartínez. 2018. On Deletions in Open Addressing Hashing. In 2018 Proceedings of the
Meeting on Analytic Algorithmics and Combinatorics (ANALCO). Society for Industrial and Applied Mathematics, 23–31.

doi:10.1137/1.9781611975062.3

[18] OlzhasKaiyrakhmet, Songyi Lee, BeomseokNam, SamH.Noh, andYoung-ri Choi. 2019. SLM-DB: Single-LevelKey-Value

Store with Persistent Memory. 191–205. https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet

[19] Don Knuth. 1963. Notes On "Open" Addressing.

[20] Donald Ervin Knuth. 1997. The art of computer programming. Vol. 3. Pearson Education.
[21] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, and Parthasarathy Ranganathan. 2013. Meet

the walkers: accelerating index traversals for in-memory databases. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-46). Association for Computing Machinery, New York, NY, USA,

468–479. doi:10.1145/2540708.2540748

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

https://doi.org/10.1145/2807591.2807670
https://doi.org/10.1145/3625817
https://doi.org/10.1109/FOCS52979.2021.00115
https://doi.org/10.1089/CMB.2015.0199
https://doi.org/10.1109/SFCS.1985.48
https://doi.org/10.1145/3183713.3196898
https://doi.org/10.1109/TC.1984.1676499
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/2694344.2694359
https://doi.org/10.1145/602259.602261
https://aws.amazon.com/dynamodb/
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan
https://doi.org/10.1109/69.180602
https://abseil.io/docs/cpp/guides/container
https://doi.org/10.1145/3318464.3389739
https://doi.org/10.1093/COMJNL/15.4.314
https://doi.org/10.1137/1.9781611975062.3
https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet
https://doi.org/10.1145/2540708.2540748

236:26 Yuvaraj Chesetti, Benwei Shi, JeffM. Phillips, and Prashant Pandey

[22] Piyush Kumar, Mobashshirur Rahman, Suyel Namasudra, and Nageswara Rao Moparthi. 2023. Enhancing Security

of Medical Images Using Deep Learning, Chaotic Map, and Hash Table. Mobile Networks and Applications (Sept. 2023).
doi:10.1007/s11036-023-02158-y

[23] Dean De Leo and Peter A. Boncz. 2021. Teseo and the Analysis of Structural Dynamic Graphs. Proc. VLDB Endow. 14,
6 (2021), 1053–1066. doi:10.14778/3447689.3447708

[24] Xiaozhou Li, David G. Andersen, Michael Kaminsky, andMichael J. Freedman. 2014. Algorithmic improvements for

fast concurrent Cuckoo hashing. In Proceedings of the Ninth European Conference on Computer Systems (Amsterdam,

The Netherlands) (EuroSys ’14). Association for Computing Machinery, New York, NY, USA, Article 27, 14 pages.

doi:10.1145/2592798.2592820

[25] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2017. Cicada: Dependably Fast Multi-Core In-Memory

Transactions. In Proceedings of the 2017 ACM International Conference on Management of Data (SIGMOD ’17). Association
for Computing Machinery, New York, NY, USA, 21–35. doi:10.1145/3035918.3064015

[26] Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li. 2021. Sparta: high-performance, element-wise sparse tensor

contraction on heterogeneous memory. In PPoPP ’21: 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, Virtual Event, Republic of Korea, February 27- March 3, 2021, Jaejin Lee and Erez Petrank (Eds.). ACM,

318–333. doi:10.1145/3437801.3441581

[27] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan Gopalakrishnan, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. 2017. WiscKey: Separating Keys from Values in SSD-Conscious Storage. ACM Transactions on Storage
13, 1 (March 2017), 5:1–5:28. doi:10.1145/3033273

[28] Tobias Maier, Peter Sanders, and Roman Dementiev. 2019. Concurrent Hash Tables: Fast and General(?)! ACM Trans.
Parallel Comput. 5, 4 (2019), 16:1–16:32. doi:10.1145/3309206

[29] GuillaumeMarçais and Carl Kingsford. 2011. A fast, lock-free approach for efficient parallel counting of occurrences

of k-mers. Bioinform. 27, 6 (2011), 764–770. doi:10.1093/BIOINFORMATICS/BTR011

[30] Gabriel Mateescu, Wolfgang Gentzsch, and Calvin J. Ribbens. 2011. Hybrid Computing—Where HPCmeets grid and

Cloud Computing. Future Generation Computer Systems 27, 5 (May 2011), 440–453. doi:10.1016/j.future.2010.11.003

[31] Hunter McCoy, Steven A. Hofmeyr, Katherine A. Yelick, and Prashant Pandey. 2023. Singleton Sieving: Overcoming

the Memory/Speed Trade-Off in Exascale𝜅-mer Analysis. In SIAM Conference on Applied and Computational Discrete
Algorithms, ACDA 2023, Seattle, WA, USA, May 31 - June 2, 2023, JonathanW. Berry, David B. Shmoys, Lenore Cowen,

and Uwe Naumann (Eds.). SIAM, 213–224. doi:10.1137/1.9781611977714.19

[32] Memcached 2024. Memcached. https://memcached.org/. Accessed: 2024-10-06.

[33] Michael Mitzenmacher and Eli Upfal. 2017. Probability and computing: Randomization and probabilistic techniques in
algorithms and data analysis. Cambridge university press.

[34] Vikram Narayanan, David Detweiler, Tianjiao Huang, and Anton Burtsev. 2023. DRAMHiT: A Hash Table Architected

for the Speed of DRAM. In Proceedings of the Eighteenth European Conference on Computer Systems, EuroSys 2023, Rome,
Italy, May 8-12, 2023, Giuseppe Antonio Di Luna, Leonardo Querzoni, Alexandra Fedorova, and Dushyanth Narayanan
(Eds.). ACM, 817–834. doi:10.1145/3552326.3587457

[35] Anna Pagh, Rasmus Pagh, and Milan Ruzic. 2009. Linear Probing with Constant Independence. SIAM J. Comput. 39,
3 (2009), 1107–1120. doi:10.1137/070702278

[36] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo Hashing. J. Algorithms 51, 2 (May 2004), 122–144.

doi:10.1016/j.jalgor.2003.12.002

[37] Prashant Pandey, Fatemeh Almodaresi, Michael A Bender, Michael Ferdman, Rob Johnson, and Rob Patro. 2018. Mantis:

A fast, small, and exact large-scale sequence-search index. Cell systems 7, 2 (2018), 201–207.
[38] Prashant Pandey, Michael A. Bender, Alex Conway, Martin Farach-Colton, William Kuszmaul, Guido Tagliavini, and

Rob Johnson. 2023. IcebergHT: High Performance Hash Tables Through Stability and Low Associativity. Proceedings
of the ACM onManagement of Data 1, 1 (May 2023), 47:1–47:26. doi:10.1145/3588727

[39] Prashant Pandey,Michael A Bender, Rob Johnson, and Rob Patro. 2017. deBGR: an efficient and near-exact representation

of the weighted de Bruijn graph. Bioinformatics 33, 14 (2017), i133–i141. doi:10.1093/BIOINFORMATICS/BTX261

[40] Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro. 2017. A General-Purpose Counting Filter: Making

Every Bit Count. In Proceedings of the 2017 ACM International Conference on Management of Data. ACM, Chicago Illinois

USA, 775–787. doi:10.1145/3035918.3035963

[41] Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro. 2018. Squeakr: an exact and approximate k-mer

counting system. Bioinform. 34, 4 (2018), 568–575. doi:10.1093/BIOINFORMATICS/BTX636

[42] Prashant Pandey, Yinjie Gao, and Carl Kingsford. 2021. VariantStore: An Index for Large-Scale Genomic Variant Search.

22, 1 (2021), 231. doi:10.1186/s13059-021-02442-8

[43] Prashant Pandey, Shikha Singh, Michael A. Bender, JonathanW. Berry, Martin Farach-Colton, Rob Johnson, Thomas M.

Kroeger, and Cynthia A. Phillips. 2020. Timely Reporting of Heavy Hitters using External Memory. In Proceedings of the
2020 International Conference on Management of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA],

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

https://doi.org/10.1007/s11036-023-02158-y
https://doi.org/10.14778/3447689.3447708
https://doi.org/10.1145/2592798.2592820
https://doi.org/10.1145/3035918.3064015
https://doi.org/10.1145/3437801.3441581
https://doi.org/10.1145/3033273
https://doi.org/10.1145/3309206
https://doi.org/10.1093/BIOINFORMATICS/BTR011
https://doi.org/10.1016/j.future.2010.11.003
https://doi.org/10.1137/1.9781611977714.19
https://memcached.org/
https://doi.org/10.1145/3552326.3587457
https://doi.org/10.1137/070702278
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1145/3588727
https://doi.org/10.1093/BIOINFORMATICS/BTX261
https://doi.org/10.1145/3035918.3035963
https://doi.org/10.1093/BIOINFORMATICS/BTX636
https://doi.org/10.1186/s13059-021-02442-8

Zombie Hashing: Reanimating Tombstones in a Graveyard 236:27

June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q.

Ngo (Eds.). ACM, 1431–1446. doi:10.1145/3318464.3380598

[44] Johannes Pietrzyk, Annett Ungethüm, Dirk Habich, andWolfgang Lehner. 2019. Fighting the Duplicates in Hashing:

Conflict Detection-aware Vectorization of Linear Probing. P-289 (2019), 35–53. doi:10.18420/BTW2019-04

[45] Sylvia Ratnasamy, Brad Karp, Li Yin, Fang Yu, Deborah Estrin, Ramesh Govindan, and Scott Shenker. 2002. GHT:

a geographic hash table for data-centric storage. In Proceedings of the 1st ACM international workshop on Wireless
sensor networks and applications (WSNA ’02). Association for Computing Machinery, New York, NY, USA, 78–87.

doi:10.1145/570738.570750

[46] Redis 2024. Redis. https://redis.io/. Accessed: 2024-10-06.

[47] Stefan Richter, Victor Alvarez, and Jens Dittrich. 2015. A Seven-Dimensional Analysis of Hashing Methods and its

Implications on Query Processing. Proc. VLDB Endow. 9, 3 (2015), 96–107. doi:10.14778/2850583.2850585
[48] G. Schay and W. G. Spruth. 1962. Analysis of a file addressing method. Commun. ACM 5, 8 (Aug. 1962), 459–462.

doi:10.1145/368637.368827

[49] Malte Skarupke. 2017. I Wrote The Fastest Hashtable. https://probablydance.com/2017/02/26/i-wrote-the-fastest-

hashtable/. Accessed: 2025-01-22.

[50] Swiss Table Notes 2024. abseil / Swiss Tables Design Notes. https://abseil.io/about/design/swisstables. Accessed:

2024-10-06.

[51] Sebastian Sylvan. 2013. Robin Hood Hashing should be your default Hash Table implementation.

https://www.sebastiansylvan.com/post/robin-hood-hashing-should-be-your-default-hash-table-implementation/.

Accessed: 2025-01-22.

[52] Hui Tian, Yuxiang Chen, Chin-Chen Chang, Hong Jiang, Yongfeng Huang, Yonghong Chen, and Jin Liu. 2017.

Dynamic-Hash-Table Based Public Auditing for Secure Cloud Storage. IEEE Transactions on Services Computing 10,
5 (Sept. 2017), 701–714. doi:10.1109/TSC.2015.2512589 Conference Name: IEEE Transactions on Services Computing.

[53] Sujatha R. Upadhyaya. 2013. Parallel approaches to machine learning—A comprehensive survey. J. Parallel and Distrib.
Comput. 73, 3 (March 2013), 284–292. doi:10.1016/j.jpdc.2012.11.001

[54] Aho A. V. 1986. Compilers Principles. Techniques, and Tools (1986). https://cir.nii.ac.jp/crid/1570572699852468736

Publisher: Addison-Wesley publishing company.

[55] Wikipedia. 2024. MurmurHash. https://en.wikipedia.org/wiki/MurmurHash. Accessed: 2024-10-06.

[56] Wikipedia. 2024. Streaming SIMD Extensions. https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions Accessed

2024-10-06.

[57] Helen Xu, Amanda Li, Brian Wheatman, Manoj Marneni, and Prashant Pandey. 2023. BP-Tree: Overcoming

the Point-Range Operation Tradeoff for In-Memory B-Trees. Proc. VLDB Endow. 16, 11 (aug 2023), 2976–2989.

doi:10.14778/3611479.3611502

[58] Shuotao Xu, Sungjin Lee, SangWoo Jun, Ming Liu, Jamey Hicks, and Arvind. 2016. BlueCache: A Scalable Distributed

Flash-based Key-value Store. Proc. VLDB Endow. 10, 4 (2016), 301–312. doi:10.14778/3025111.3025113

Received October 2024; revised January 2025; accepted February 2025

Proc. ACMManag. Data, Vol. 3, No. 3 (SIGMOD), Article 236. Publication date: June 2025.

https://doi.org/10.1145/3318464.3380598
https://doi.org/10.18420/BTW2019-04
https://doi.org/10.1145/570738.570750
https://redis.io/
https://doi.org/10.14778/2850583.2850585
https://doi.org/10.1145/368637.368827
https://probablydance.com/2017/02/26/i-wrote-the-fastest-hashtable/
https://probablydance.com/2017/02/26/i-wrote-the-fastest-hashtable/
https://abseil.io/about/design/swisstables
https://www.sebastiansylvan.com/post/robin-hood-hashing-should-be-your-default-hash-table-implementation/
https://doi.org/10.1109/TSC.2015.2512589
https://doi.org/10.1016/j.jpdc.2012.11.001
https://cir.nii.ac.jp/crid/1570572699852468736
https://en.wikipedia.org/wiki/MurmurHash
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
https://doi.org/10.14778/3611479.3611502
https://doi.org/10.14778/3025111.3025113

	Abstract
	1 Introduction
	2 Background
	2.1 Linear probing hash table
	2.2 Robin hood hashing
	2.3 Graveyard hashing

	3 Deamortizing Graveyard Hashing
	3.1 Potential deamortization solutions
	3.2 Simple deamortized GraveyardHT

	4 Zombie Hashing
	5 Optimizations for Zombie Hashing
	6 Ordered variant
	6.1 Compact hash table
	6.2 QF with Tombstones
	6.3 Zombie hashing rebuilds

	7 Unordered variant
	7.1 AbslHT design
	7.2 Deamortized rebuilds in AbslHT

	8 Experiments
	8.1 Results summary
	8.2 Experimental setup
	8.3 Ordered linear probing
	8.4 Unordered linear probing
	8.5 Space efficiency
	8.6 Microbenchmarks

	9 Discussion & Conclusion
	References

