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ABSTRACT
Nearest-neighbor (NN) search, which returns the nearest
neighbor of a query point in a set of points, is an impor-
tant and widely studied problem in many fields, and it has
wide range of applications. In many of them, such as sen-
sor databases, location-based services, face recognition, and
mobile data, the location of data is imprecise. We therefore
study nearest neighbor queries in a probabilistic framework
in which the location of each input point is specified as a
probability distribution function. We present efficient algo-
rithms for (i) computing all points that are nearest neighbors
of a query point with nonzero probability; (ii) estimating,
within a specified additive error, the probability of a point
being the nearest neighbor of a query point; (iii) using it to
return the point that maximizes the probability being the
nearest neighbor, or all the points with probabilities greater
than some threshold to be the NN. We also present some
experimental results to demonstrate the effectiveness of our
approach.

Categories and Subject Descriptors
F.2 [Analysis of algorithms and problem complexity]:
Nonnumerical algorithms and problems; H.3.1 [Information
storage and retrieval]: Content analysis and indexing—
indexing methods

General Terms
Algorithms, Theory

Keywords
Indexing uncertain data, probabilistic nearest neighbor, ap-
proximate nearest neighbor, threshold queries

1. INTRODUCTION
Nearest-neighbor search is a fundamental problem in data

management. It has applications in such diverse areas as
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spatial databases, information retrieval, data mining, pattern
recognition, etc. In its simplest form, it asks for preprocessing
a set S of n points in Rd into an index so that given any query
point q, the nearest neighbor (NN) of q in S can be reported
efficiently. This problem has been studied extensively in both
the database and the computational geometry community,
and is now relatively well understood. However, in some of
the applications mentioned above, data is imprecise and is
often modeled as probabilistic distributions. This has led
to a flurry of research activities on query processing over
probabilistic data, including the NN problem; see [7, 16]
for surveys on uncertain data, and see, e.g., [15, 25] for
application scenarios of NN search under uncertainty.

However, despite many efforts devoted to the probabilistic
NN problem, it still lacks a theoretical foundation. Specifi-
cally, not only are we yet to understand its complexity (is
the problem inherently more difficult than on precise data?),
but we also lack efficient algorithms to solve it. Furthermore,
existing solutions all use heuristics without nontrivial per-
formance guarantees. This paper addresses some of these
issues.

1.1 Problem definition
An uncertain point1 P in R2 is represented as a continuous

probability distribution defined by a probability density func-
tion (pdf) fP : R2 → R≥0; fP may be a parametric pdf such
as a uniform distribution or a Gaussian distribution, or may
be a non-parametric pdf such as a histogram. The uncer-
tainty region of P (or the support of fP ) is the set of points
for which fP is positive, i.e., Sup fP =

{
x ∈ R2 | fP (x) > 0

}
.

We assume P has a bounded uncertainty region: if fP is
Gaussian, we work on truncated Gaussian, as in [10, 12]. We
also consider the case where P is represented as a discrete
distribution defined by a finite set P = {p1, . . . , pk} ⊂ R2

along with a set of probabilities {w1, . . . , wk} ⊂ [0, 1], where

wi = Pr[P is pi] and
∑k

i=1 wi = 1.
Let P = {P1, . . . , Pn} be a set of n uncertain points in R2,

and let d(·, ·) be the Euclidean distance. For a point q ∈ R2,
let πi(q) = π(Pi, q) be the probability of Pi ∈ P being
the nearest neighbor of q, referred to as its qualification
probability, defined as follows:

For a point q, and i = 1, . . . , n, let gq,i be the pdf of
the distance between q and Pi. That is, gq,i(x) = Pr[x ≤
d(q, Pi) ≤ x + dx]. See Fig. 1 for an example of gq,i. Let
Gq,i(x) =

∫ x
0
gq,i(y)dy denote the cumulative distribution

function (cdf) of the distance between q and Pi. Then πi(q),

1If the location of data is precise, we call it certain.
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Figure 1. (a) Pi is represented by a uniform distribution
defined on a disk D of radius r = 5 and centered at origin O,
q = (6, 8), and d(·, ·) is L2 metric; (b) gq,i(x).

the probability that Pi is the NN of q, is

πi(q) =

∫ ∞
0

gq,i(r)
∏
j 6=i

(1−Gq,j(r))dr. (1)

Given a set P of n uncertain points, the probabilistic nearest
neighbor (PNN) problem is to preprocess P into an index so
that, for any given query point q, we can efficiently return
all pairs (Pi, πi(q)) such that πi(q) > 0.

In addition, one can consider the most likely NN of q,
denoted NNL, which is the Pi with the maximum πi(q); or
the threshold NN, i.e., all the Pi’s with πi(q) exceeding a
given threshold τ .

Usually, the PNN problem is divided into the following two
subproblems, which are often considered separately.

Nonzero NNs. The first subproblem is to find all the Pi’s
with πi(q) > 0 without computing the actual qualification
probabilities, i.e., to find

NN6=0(q,P) = {Pi | πi(q) > 0}.

If the point set P is obvious from the context, we drop the
argument P from NN6=0(q,P), and write it as NN6=0(q). Note
that NN6=0(q) depends (besides q) only on the uncertainty
regions of the uncertain points, but not on the actual pdf’s.

A possible approach to compute nearest neighbors is to
use Voronoi diagrams. For example, the standard Voronoi
diagram of a set of points in R2 (without uncertainty) is the
planar subdivision so that all points in the same face have
the same nearest neighbor. In our case, we define the nonzero
Voronoi diagram, denoted by V6=0(P), to be the subdivision
of R2 into maximal connected regions such that NN6=0(q) is
the same for all points q within each region. That is, for a
subset T ⊆ P, let

cell6=0(T) = {q ∈ R2 | NN6=0(q) = T}. (2)

Although there are 2n subsets of P, we will see below that
only a small number of them have nonempty Voronoi cells.
The planar subdivision V 6=0(P) is induced by all the nonempty
cell6=0(T)’s for T ⊆ P. The (combinatorial) complexity of
V 6=0(P) is the total number of vertices, edges, and faces in
V 6=0(P). In this paper, we study the worst-case complexity
of V6=0(P) and how it can be efficiently constructed. The
complexity of the Voronoi diagram is often regarded as a
measure of the complexity of the corresponding nearest-
neighbor problem. In addition, once we have V 6=0(P), a
point-location structure can be built on top of it to support
NN6=0 queries in logarithmic time.

Similarly, one can consider the most likely Voronoi dia-
gram (partitioning the plane into regions having the same
most likely NN) and the threshold Voronoi diagram (parti-
tioning the plane into regions having the same set of points
with qualification probabilities exceeding τ). However, these
Voronoi diagrams tend to be more complex as they depend
on the actual distributions of the uncertain points.

Computing qualification probabilities. The second
subproblem is to compute the qualification probability πi(q)
for a given q and Pi. Since exact values of these probabili-
ties are often unstable — a far away point can affect these
probabilities — and computing them requires a complex n-
dimensional integration, which is often expensive, we resort
to computing πi(q) approximately within a given error toler-
ance 0 < ε < 1. More precisely, we aim at returning a value
π̂i(q) such that |πi(q)− π̂i(q)| ≤ ε.

Note that, having solved these two subproblems, we obtain
immediate approximate solutions to the most likely NN and
the threshold NN problems.

1.2 Previous work
Nonzero NNs. Sember and Evans [28] showed that
the worst-case complexity of the nonzero Voronoi diagram
(though they did not use this term explicitly) when the uncer-
tainty regions of the uncertain points are disks is O(n4); they
did not offer any lower bound. If one only considers those
cells of V6=0(P ) in which NN6=0(q) contains only one uncertain
point Pi, they showed that the complexity of these cells is
O(n). Note that for such a cell, we always have πi(q) = 1 for
any q in the cell, so they are called the guaranteed Voronoi
diagram. Probably unaware of the work by Sember and
Evans [28], Cheng et al. [15] proved an exponential upper
bound for the complexity of the nonzero Voronoi diagram,
which they referred to as UV-diagram.

The nonzero Voronoi diagram is not the only way to find
the nonzero NNs. Cheng et al. [14] designed a branch-and-
prune solution based on the R-tree. Recently, Zhang et al.
[32] proposed to combine the nonzero Voronoi diagram with
R-tree-like bounding rectangles. These methods do not have
any performance guarantees.

Computing qualification probabilities. Computing
the qualification probabilities has attracted a lot of attention
in the database community. Cheng et al. [14] used numerical
integration, which is quite expensive. Cheng et al. [12] and
Bernecker et al. [9] proposed some filter-refinement methods
to give upper and lower bounds on the qualification proba-
bilities. Kriegel et al. [23] took a random sample from the
continuous distribution of each uncertain point to convert it
to a discrete one, so that the integration becomes a sum, and
they clustered each sample to further reduce the complexity
of the query computation. These methods are best-effort
based: they do not always give the ε-error that we aim at —
how tight the bounds are depends on the data.

Other variants of the problem. The PNN problem we
focus on in this paper is the most commonly studied version
of the problem, but many variants and extensions have been
considered.

The probabilistic model we use is often called the locational
model, where the location of an uncertain point follows the
given distribution. This is to be compared with the existential
model, where each point has a precise location but it appears
with a given probability.



Besides using the qualification probability, one can also
consider the expected distance from a query point q to an
uncertain point, and return the one minimizing the expected
distance as the nearest neighbor; this was studied by Agarwal
et al. [3]. This NN definition is much easier since the expected
distance to each uncertain point can be computed separately,
whereas the qualification probability involves the interaction
among all uncertain points. However, the expected nearest
neighbor is not a good indicator under large uncertainty (see
[31] for details).

Finally, instead of returning only the nearest neighbor, one
can ask to return the k nearest neighbors in a ranked order
(the kNN problem). If we use expected distance, the ranking
is straightforward. However, when qualification probabilities
are considered, many different criteria for ranking the results
are possible, leading to different problem variants.

Various combinations of these extensions have been studied
in the literature; see, e.g., [10, 13, 22, 25, 31].

1.3 Our results
In this paper, we present efficient algorithms with proven

guarantees on their performances for the nonzero NN problem
as well as for computing the qualification probabilities.

Nonzero NNs. We first study (in Section 2.1) the com-
plexity of V 6=0(P). Suppose the uncertainty region of each
Pi ∈ P is a disk and d(·, ·) is the L2 metric. We show that
V 6=0(P) has O(n3) complexity, and that this bound is tight in
the worst case. This significantly improves the bound in [28]
and closes the problem. If the disks are pairwise disjoint and
the ratio of their radii is at most λ, then the complexity of
V 6=0(P) is O(λn2). In either case, V 6=0(P) can be computed
in O(n2 logn + µ) expected time, where µ is the complex-
ity of V 6=0(P). We can build a point-location structure on
top of V6=0(P) whose size is proportional to the complexity
of V6=0(P) and answer an NN6=0 query in O(logn+ t) time,
where t is the output size.

If each point in P has a discrete distribution of size at most
k, then we show that V6=0(P) has O(kn3) complexity. Hence,
we can answer an NN6=0 query in O(log(nk) + t) time using
O(kn3) space.

Next, we consider (in Section 2.2) how quickly NN6=0

queries can be answered using less space. If the uncertainty
region of each uncertain point is a disk, then an NN6=0 query
can be answered in O(logn+ t) time using O(n1+ε) space,
for any constant ε > 0, where t is the output size. If each
uncertain point has at most k possible locations, then an
NN6=0 query can be answered in O(log(nk) + t) time using

O((nk)2+ε) (for any ε > 0) space, or in O((nk)1/2+ε + t)
time using O(nk) space, where t is the output size.

Computing qualification probabilities. We present
two algorithms for computing the qualification probabilities
efficiently. The first (see Section 3.1) is a Monte-Carlo algo-
rithm for estimating πi(q) for any Pi and q within error ε
with high probability. First we argue that if each uncertain
point has a discrete distribution of size poly(n), then we
can estimate πi(q) within error ε by using sε = O( 1

ε2
log n

ε
)

random instantiations of P. (Note that there are at most 1/ε
Pi’s for which πi(q) > ε.) Consequently, we can preprocess P

into an index of size O( n
ε2

log n
ε

) so that for any query point

q ∈ R2, πi(q) for all Pi’s can be estimated within error ε in
O( 1

ε2
log n

ε
log n) time, with probability at least 1−1/n. The

algorithms explicitly computes the estimates of πi(q)’s for at

most sε points and sets the estimate to 0 for the rest of the
points. This index can also be used to find the (approximate)
most likely NN and the threshold NN within the same time
bound. We also show that this approach works even if the
distribution of each Pi is continuous.

Next, we describe (in Section 3.2) a deterministic algo-
rithm for computing πi(q) approximately provided that the
distribution of each Pi is discrete. Let Pi = {pi1, . . . , pik}
and wij = Pr[Pi is pij ]. We set ρ =

maxwij

minwij
, where maximum

and minimum are taken over all the location probabilities of
points in S =

⋃n
i=1 Pi. We show that P can be preprocessed

into an index of O(n) size so that for any q ∈ R2 and for
any ε > 0, πi(q), for all i ≤ n, can be computed with error
at most ε in O(ρk log(ρ/ε) + logn) time. Our result shows
that there are at most m(ρ, ε) = ρk ln(ρ/ε) + k − 1 points
of P for which πi(q) > ε. The algorithm explicitly estimates
πi(q) for at most m(ρ, ε) points and sets the estimate to 0
for the rest of the points. As earlier, this index can be used
to solve the most likely NN and the threshold NN problem
approximately within the same time bound.

Finally, we present experimental results, in Section 4, to
demonstrate the efficacy of our approach for estimating quan-
tification probabilities.

2. NONZERO PROBABILISTIC NN
In this section, we describe algorithms for answering NN6=0

queries. We first describe algorithms for computing V 6=0 so
that an NN6=0 query can be answered in logarithmic time
by preprocessing V6=0 for point-location queries, and then
describe indexing methods for answering NN6=0 queries using
less space.

2.1 Nonzero Probabilistic Voronoi Diagram
Let P be a set of n uncertain points as described earlier. We

analyze the combinatorial structure of V 6=0(P) and describe
algorithms for constructing it. We first consider the case
when the distribution of each point is continuous and then
consider the discrete case.

Continuous case. For simplicity, we assume that the
uncertainty region of each Pi is a circular disk Di of radius
ri centered at ci.

We first observe that the actual pdf of Pi is not important
for computing V 6=0(P). What really matters is the uncertainty
region Di. More precisely, for each 1 ≤ i ≤ n and for q ∈ R2,
let

∆i(q) = max
p∈Di

d(q, p) = d(q, ci) + ri,

δi(q) = min
p∈Di

d(x, q) = max{d(q, ci)− ri, 0}

be the maximum and minimum possible distance, respec-
tively, from q to a Pi.

The proof of the following lemma is straightforward.

Lemma 2.1. For a point x ∈ R2, a point Pi ∈ P belongs
to NN6=0(x,P) if and only if

δi(x) < ∆j(x) for all 1 ≤ j 6= i ≤ n.

Let ∆: R2 → R denote the lower envelope2 of ∆1, . . ., ∆n;

2The lower envelope, LF , of a set F of functions is their
pointwise minimum, i.e., LF (x) = minf∈F f(x). The upper
envelope, UF , of F is the pointwise maximum, i.e., UF (x) =
maxf∈F f(x).
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Figure 2. P = {P1, . . . , P5}. ∆(x) =
∆1(x), NN6=0(x,P) = {P1, P2, P3},
∆(x′) = ∆1(x′), NN6=0(x′,P) = {P1, P2},
and x′ lies on an edge of V6=0(P).
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Figure 3. The point q is a breakpoint of γ3 and
q′ is an intersection point of γ2 and γ3.
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Figure 4. An example of
γ1.

that is, for any q ∈ R2,

∆(q) = min
1≤i≤n

∆i(q).

The projection of the graph of ∆(x) onto the xy-plane is the
additive-weighted Voronoi diagram of the points c1, . . . , cn,
where the weight of ci is ri, and the weighted distance from
q to ci is d(q, ci) + ri, for i = 1, . . . , n. Let M denote this
planar subdivision. It has linear complexity and each of its
edges is a hyperbolic arc; see [8]. Lemma 2.1 implies that,
for any q ∈ R2,

NN6=0(q,P) = {Pi | δi(q) < ∆(q)} . (3)

See Fig. 2. It also implies that, as we move x continuously
in R2, NN6=0(x,P) remains the same until δi(x), for some
1 ≤ i ≤ n, becomes equal to ∆(x) (e.g., x′ in Fig. 2). The
above was also observed in previous work. See, e.g. [12, 14].
Using this observation we can now characterize V 6=0(P).

For i = 1, . . . , n, let γi = {x ∈ R2 | δi(x) = ∆(x)} be the
zero set of the function ∆(x)− δi(x). Set Γ = {γ1, . . . , γn}.

The curve γi partitions the plane into two open regions:
∆(x) < δi(x) and ∆(x) > δi(x). By Eq. (3), Pi ∈ NN6=0(x,P)
for all points x inside the latter region and for none of the
points x inside the former region. It is well known that
for any fixed j 6= i, γij = {x ∈ R2 | δi(x) = ∆j(x)} is a
hyperbolic curve [8]. The curve γi is composed of pieces
of γij , for j 6= i. We refer to the endpoints of these pieces
as breakpoints of γi. They are the intersection points of γi
with an edge of M and correspond to points q such that the
disk of radius ∆(q) centered at q touches (at least) two disks
of D from inside, touches Di from outside, and does not
contain any disk of D in its interior. See Fig. 3. Formally,
we say that a disk D1 touches a disk D2 from the outside
(resp. inside) if ∂D1 ∩ ∂D2 6= ∅ and intD1 ∩ intD2 = ∅ (resp.
intD2 ⊆ intD1).

Lemma 2.2. The curve γi, 1 ≤ i ≤ n, has at most 2n
breakpoints, and it can be computed in O(n logn) time.

Proof. Let Γi = {γij | j 6= i, 1 ≤ j ≤ n}. It can be
verified that a ray emanating from ci intersects γij , for any
j 6= i, in at most one point, so γij can be viewed as the
graph of a function in polar coordinates with ci as the origin.
That is, let γij : [0, 2π)→ R≥0, where γij(θ) is the distance
from ci to γij in direction θ. Then γi is the lower envelope
of Γi. Since each pair of arcs in Γi intersects at most twice,
a well-known result on lower envelopes implies that γi has
at most 2n breakpoints, and that it can be computed in
O(n logn) time [29]. See Fig. 4 for an example.

Let A(Γ) denote the planar subdivision induced by Γ: its
vertices are the breakpoints of γi’s and the intersection points

of two curves in Γ, its edges are the portions of γi’s between
two consecutive vertices, and its cells are the maximal con-
nected regions of Γ that do not intersect any curve of Γ. We
refer to vertices, edges, and cells of A(Γ) as its 0-, 1-, and
2-dimensional faces.

For a face φ (of any dimension), and for any two points
x, y ∈ φ, the sets {Pi | δi(x) < ∆(x)} and {Pj | δj(y) <
∆(y)} are the same; we denote this set by Pφ.

Lemma 2.3. Let x ∈ R2 be a point lying in a face φ
of A(Γ). Then NN6=0(x,P) = Pφ.

For a subset T ⊆ P, let cell6=0(T) be as defined in Eq. (2).
An immediate corollary of the above lemma is:

Corollary 2.4. (i) For any T ⊆ P, cell6=0(T) 6= ∅ if and
only if there is a face φ of A(Γ) with T = Pφ.

(ii) The planar subdivision A(Γ) coincides with V 6=0(P).

We now bound the complexity of A(Γ) and thus of V 6=0(P).

Theorem 2.5. Let P = {P1, . . . , Pn} be a set of n uncer-
tain points in R2 such that the uncertainty region of each
point is a disk. Then V 6=0(P) has O(n3) complexity. More-
over, it can be computed in O(n2 logn + µ) expected time,
where µ is the complexity of V6=0(P).

Proof. Since V6=0(P) is a planar subdivision, the number
of edges and cells in it is proportional to the number of its
vertices, so it suffices to bound the number of vertices. By
Lemma 2.2, each γi has O(n) breakpoints, so there are a total
of O(n2) breakpoints. We claim that each pair of curves γi
and γj intersect O(n) times — each such intersection point
corresponds to a point v ∈ R2 such that the disk of radius
∆(v) centered at v touches Di and Dj from the outside and
another disk Dk of D, the one realizing the value of ∆(v),
from the inside (e.g., q′ in Fig. 3). For a fixed k, it can
be shown that there are at most two points v such that
δi(v) = δj(v) = ∆k(v). Hence, the number of vertices in
V 6=0(P) is O(n3), as claimed.

By Lemma 2.10, one can first compute all these curves in Γ
in O(n2 log n) time, and then compute the planar subdivision
A(Γ) of Γ in O(µ) time using randomized incremental method
[6], where µ is the complexity of V 6=0(P). Hence V 6=0(P) can
be computed in O(n2 logn+ µ) expected time.

Remarks. This bound holds even if the uncertainty region
of each point is a semialgebraic set of constant description
complexity, i.e., each region is defined by Boolean operations
(union, intersection, and complementation) of a constant
number of bivariate polynomial inequalities of constant max-
imum degree each.



Next we show that the above upper bound is tight in the
worst case.

Theorem 2.6. There exists a set P of n uncertain points
for which V6=0(P) has Ω(n3) vertices.
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Figure 5. (a) Ω(n3) lower bound construction with m = 3;
only some disks are drawn. (b) Illustration of the proof.

Proof. Assume that n = 4m for some m ∈ N+. We
choose two parameters R = 8n2 and ω = 1/n2. We con-
struct three families of disks: D− = {D−1 , . . . ,D

−
m}, D+ =

{D+
1 , . . . , D

+
m}, and D0 = {D0

1, . . . , D
0
2m}. The radius of all

disks in D− ∪ D+ is R and their centers lie on the x-axis;
the radius of all disks in D0 is 1 and their centers lie on the
y-axis. More precisely, for 1 ≤ i, j ≤ m, the center of D−i
is c−i = (−R − 3/2 − (i − 1)ω, 0) and the center of D+

j is

c+j = (R+ 3/2 + (j − 1)ω, 0), and for 1 ≤ k ≤ 2m, the center

of D0
k is (0, 4(k −m)− 2). See Fig. 5 (a).

We claim that for every triple i, j, k with 1 ≤ i, j ≤ m and
1 ≤ k ≤ 2m, there are two disks touching D−i and D+

j from

the outside and D0
k from the inside and not containing any

disk of D− ∪D+ ∪D0 in its interior. See Fig. 5(b).
Fix such a triple i, j, k. Since the radius of D−i and D+

j

is the same, the locus bij of the centers of disks that si-
multaneously touch D−i and D+

j from the outside is the
bisector of their centers, i.e., bij is the vertical line x =
(x(c−i ) + x(c+j ))/2 = (j − i)ω/2. Let σij denote the inter-

section point of bij and the x-axis; σij = ( 1
2
(j − i)ω, 0). A

point on bij can be represented by its y-coordinate; we will
not distinguish between the two. For y-value a, let ξa be the
disk centered at a and simultaneously touching D−i and D+

j .
The radius of ξa is

‖a− c−i ‖ −R =
»
a2 + ‖c−i − σij‖2 −R

=

…
a2 +

(
R+ 3/2 +

(
i+ j

2
− 1
)
ω
)2

−R.

The radius of ξa is thus at least 3/2, and for a ∈ [−4m, 4m],
it is at most 2 (using the fact that R ≥ 8n2 and ω = 1/n2).
Hence for a ∈ [−4m, 4m], ξa contains at most one disk of D0

in its interior, and obviously ξa does not contain any disk of
D− ∪D+ in its interior.

Let ak = 4(k −m) − 2. Then the disk ξak contains D0
k

in its interior because the distance between the centers of
D0
k and ξak is at most mω ≤ 1/(4n), the radius of D0

k

is 1, and the radius of ξak is at least 3/2. On the other
hand, the disk ξa for a = ak ± 2 does not contain D0

k in its
interior because the radius of ξa is at most 2 and the distance
between the center of D0

k and ξa is at least 2. Therefore, by
a continuity argument, there is a value a+ ∈ [ak, ak + 2] at
which ξa+ touches D0

k from the inside. Similarly, there is a

value a− ∈ [ak − 2, ak] at which ξa− touches D0
k from the

inside.
This proves the claim that there are two disks touching

D−i and D+
j from the outside and D0

k from the inside and not

containing any disk of D− ∪D+ ∪D0 in its interior. In other
words, each triple i, j, k contributes two vertices to V 6=0(P).
Hence V6=0(P) has Ω(n3) vertices.

Remarks. A more careful construction gives an Ω(n3)
lower bound on the complexity of V 6=0(P) even if all disks
in D have the same radius.

Next, if the disks in D are pairwise disjoint and the ratio
of the radii of the largest to the smallest disk is bounded
by λ, then we prove a refined bound on the complexity of
V 6=0(P) that depends on λ.

Lemma 2.7. If P = {P1, . . . , Pn} is a set of n uncertain
points in R2 such that their uncertainty regions are pairwise-
disjoint disks with radii in the range [1, λ], a pair of curves
in Γ intersects in O(λ) points.

Proof. Fix a pair of curves γ1 and γ2, let D1 and D2 be
the corresponding disks, and let c1 and c2 be their centers,
respectively. By applying rotation and translation to the
plane, we can assume D1 and D2 are centered on the x-axis,
with D1 to the left of D2.

For a parameter t, 1 ≤ t ≤ λ, let D denote the set of
all the disks associated with P, excluding D1 and D2, with
radii between t and 2t. An intersection point q ∈ γ1 ∩ γ2

corresponds to a witness disk W centered at q that touches
both D1 and D2 from the outside, touches exactly one other
disk E ∈ D from the inside, and properly contains no disks
of D. The family of disks that touch both D1 and D2 from
the outside is a pencil, which sweeps over portion of the plane
as the tangency points with D1 and D2 move continuously
(see Fig. 5(b)). A disk of D can contribute at most two
intersection points to γ1 ∩ γ2, as its boundary gets swept
over at most twice by the circles of the pencil.

For a disk E ∈ D, if its tangency point with its witness
disk W is on the top portion of W (i.e., we break ∂W into
two curves, top and bottom, at W ’s tangency points with
D1 and D2) then it is a top tangency event, otherwise it is
a bottom tangency event. Let D1 (resp. D2) be the set of
disks in D that are closer to D1 (resp. D2). See Fig. 6(a).

Below we bound the number of top tangency events in-
volving disks in D2. Other tangency events are handled by a
symmetric argument.

We remove from D2 all the disks at distance at most T = ξt
from D2, where ξ is a sufficiently large constant. The ring
with outer radius r(D2)+4T and inner radius r(D2) has area
α = π

(
(r(D2) + 4T )2 − (r(D2))2

)
= O(T r(D2) + T 2). Disks

removed from D2 have the following properties:
(i) they are interior-disjoint,
(ii) their radius is ∈ [t, 2t],
(iii) they are contained in the aforementioned ring, and
(iv) the area of each such disk is at least πt2.
Hence the number of removed disks is

O((T r(D2) + T 2)/t2) = O(λ/t),

as r(D2) ≤ λ.
Consider the circle σ2 of radius r(D2) + T/2 centered

at c2. Consider any disk E ∈ D2 and its witness disk W
touching both D1 and D2 from the outside. Let W	τ be
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Figure 6. An illustration for the proof of Lemma 2.7.

the disk concentric with W with radius r(W ) − τ , where
τ = 4t. (Note that since E has not been removed from D2,
r(W ) ≥ (T + 2t)/2; in particular it is larger than T/2.)
The disk W	τ is interior-disjoint from all disks in D2, as E
touches W from inside and W cannot fully contain any other
disks from D2.

T/2

σ2
The witness disk W covers an arc of length

at least T/2 on σ2. Indeed, neither of these
two disks covers the center of the other, and
the inner distance between the two intersection
arcs is T/2, see figure on the right. Similarly,
let I(E) be the arc W	τ ∩ σ2. By the same
argument, we have that I(E) is of length at
least T/2− τ = Ω(t).

The perimeter of σ2 is 2π(r(D2) + T/2) =
O(λ), so if the arcs I(E), for E ∈ D2, are pairwise disjoint,
we are done, as this implies that there could be at most
λ/(T/2 − τ) = O(λ/t) such arcs and thus the size of the
original D2 is O(λ/t). See Fig. 6(b). We will therefore
proceed to prove that any two such arcs are disjoint.

So, consider two disks E,E′ ∈ D2, both realizing a top
tangency event. Let W (resp. W ′) be the witness disk that
is tangent to D1,D2 and E (resp. E′). Assume that the
tangency of W with D2 is clockwise to the tangency of W ′

with D2 (i.e., E is “above”E′). If W	τ and W ′	τ are disjoint
then their corresponding arcs are disjoint. Otherwise, as we
already observed, E′ and W	τ are disjoint. Furthermore, it
is easy to verify that E′ must lie in the region “between” σ2,
W	τ , and W ′	τ , and therefore the arcs I(E) and I(E′) are
disjoint, as claimed; refer to Fig. 6(c).

We now repeat the above counting argument, for t =
1, 2, 4, . . . , 2m, where m = dlog2 λe. We get that the num-
ber of intersection points between γ1 and γ2 is bounded by∑m

i=1 O(λ/2i) = O(λ), as claimed.

Theorem 2.8. Let P = {P1, . . . , Pn} be a set of n un-
certain points in R2 such that their uncertainty regions are
pairwise-disjoint disks and that the ratio of the largest and the
smallest radii of the disks is at most λ. Then the complexity of
V 6=0(P) is O(λn2), and it can be computed in O(n2 log n+ µ)
expected time, where µ is the complexity of V6=0(P). Further-
more, there exists such a set P of uncertain points for which
V 6=0(P) has Ω(n2) complexity.

Proof. The upper bound on the complexity of V6=0(P)
follows from Lemma 2.7. By the same argument as in the
proof of Theorem 2.5, V6=0(P) can be computed inO(n2 log n+

µ) time, where µ is the number of vertices in V6=0(P). The
lower-bound construction is omitted from this abstract due
to lack of space.

We store the index i of each uncertain point Pi instead of
Pi itself. If we store Pφ for each cell φ of V 6=0(P) explicitly,
the size increases by a factor of n. However, we observe that
for two adjacent cells φ, φ′ of V 6=0(P), i.e., two cells that
share a common edge, |Pφ ⊕ Pφ′ | = 1, where ⊕ denotes the
symmetric difference of two sets. Therefore, using a persistent
data structure [18], we can store Pφ for all cells of V6=0(P)
in O(µ) space, where µ is the complexity of V6=0(P), so that
for any cell φ, Pφ can be retrieved in O(logn+ |Pφ|) time.
By combining this with the planar point-location indexing
schemes [17], we obtain the following:

Theorem 2.9. Let P be a set of n uncertain points in R2,
and let µ be the complexity of V 6=0(P). Then V 6=0(P) can be
preprocessed in O(µ log µ) time into an index of size O(µ) so
that for a query point q ∈ R2, NN6=0(q,P) can be computed
in O(logn+ t) time, where t is the output size.

Remarks. This bound can be extended to the case when
each uncertainty region is an α-fat semialgebraic set of con-
stant description complexity. A set C is called α-fat, if there
exist two concentric disks, D ⊆ C ⊆ D′, such that the ratio
between the radii of D′ and D is at most α. The constant
of proportionality also depends on α and the number and
maximum degree of polynomials defining the uncertainty
regions.

Discrete case. We now analyze the complexity of V 6=0(P)
when the distribution of each point Pi in P is discrete. Let
Pi = {pi1, . . . , pik}. For 1 ≤ j ≤ k, let wij = Pr[Pi is pij ].
As in the previous section, for a point x, let ∆i(x) =
max1≤j≤k d(x, pij) and δi(x) = min1≤j≤k d(x, pij). Note
that the projection of the graph of ∆i (resp. δi) onto the
xy-plane is the farthest-point (resp. nearest-point) Voronoi
diagram of Pi. Let ∆(x) = min1≤i≤n ∆i(x). For each i, let
γi = {x ∈ R2 | δi(x) = ∆(x)}, and set Γ = {γ1, . . . , γn}.
Then V6=0(P) is the planar subdivision induced by Γ, as de-
fined above. We need the following lemma to bound the
complexity of V 6=0(P).

Lemma 2.10. For any pair i, j, 1 ≤ i 6= j ≤ n, let γij =
{x ∈ R2 | δi(x) = ∆j(x)}, then γij is a convex polygonal
curve with O(k) vertices.



Proof. Let p ∈ R2 be a fixed point. Then we define a
linear function g : R2 → R as

g(x) = d2(x, p)− ‖x‖2 = ‖p‖2 − 2〈x, p〉.

For 1 ≤ i ≤ n, define ϕi(x) = min1≤j≤k g(x, pij) and
Φi(x) = max1≤j≤k g(x, pij). Then for any pair i, j, δi(x) =
∆j(x) if and only if ϕi(x) = Φj(x). Hence, γij is also the
zero set of the function Φj(x)− ϕi(x).

Note that Φj is the upper envelope of k linear functions,
and that it is a piecewise-linear concave function, and that ϕi,
the lower envelope of k linear functions, is a piecewise-linear
convex function. Hence Φj(x)− ϕi(x) is a piecewise-linear
concave function, which implies that γij = {x ∈ R2 | Φj(x) =
ϕi(x)} is a convex polygonal curve. Since γij is the projection
of the intersection curve of the graphs of Φj and ϕi, each of
which is a convex polyhedron with at most k faces, γij has
O(k) vertices.

Theorem 2.11. Let P = {P1, . . . , Pn} be a set of n uncer-
tain points in R2, where each Pi has a discrete distribution
of size at most k. The complexity of V 6=0(P) is µ = O(kn3)
in the worst case, and it can be computed in expected time
O(n2 log n+ µ). Furthermore, it can be preprocessed into an
index of size O(µ) so that an NN6=0(q) query can be answered
in O(logµ+ t), where t is the output size.

Proof. We follow the same argument as in the proof of
Theorem 2.5. We need to bound the number of intersection
points between a pair of curves γi and γj . Fix an index u.
Let γiu = {x ∈ R2 | δi(x) = ∆u(x)} and γju = {x ∈ R2 |
δj(x) = ∆u(x)}. By Lemma 2.10, each of γiu and γju is
a convex polygonal curve in R2 with O(k) vertices. Since
two convex polygonal curves in general position with n1 and
n2 vertices intersect in at most 2(n1 + n2) points, γiu and
γju intersect at O(k) points. Hence γi and γj intersect at
O(nk) points, implying that V6=0(P) has O(kn3) vertices.
The running time follows from the proof of Theorem 2.5.

2.2 Indexing schemes for NN6=0 queries
Despite the maximum size of V 6=0 being Θ(n3) or Θ(n2), we

can obtain indexing schemes with less space such that NN6=0

queries can be answered in poly-logarithmic or sublinear time.
We consider both continuous and discrete cases.

An NN6=0(q) query is answered in two stages. The first
stage computes ∆(q), and the second stage computes all
points Pi ∈ P for which δi(q) < ∆(q). We build a separate
index for each stage.

Continuous case. We assume that the uncertainty region
of each point Pi is a disk Di of radius ri centered at ci.
Recall from Section 2.1 that the projection of the graph of
the function ∆ onto the xy-plane, a planar subdivision M,
is the weighted Voronoi diagram of the point set c1, . . . , cn,
and it has linear complexity. Hence M can be preprocessed
in O(n logn) time into an index of size O(n) so that for a
query point q ∈ R2, ∆(q) can be computed in O(log n) time.

Next, the problem of reporting NN6=0(q) reduces to re-
porting all disks of D1, . . . ,Dn that intersect the disk of
radius ∆(q) centered at q. Using the approach described
in [4], D1, . . . , Dn can be preprocessed into an index of size
O(n1+ε), for any constant ε > 0, so that all t disks intersect-
ing a query disk can be reported in O(logn+ t) time. We
thus obtain the following:

Theorem 2.12. Let P = {P1, . . . , Pn} be a set of n un-
certain points in R2 so that the uncertainty region of each Pi
is a disk. Then P can be preprocessed into an index of size
O(n1+ε), for any ε > 0, so that an NN6=0(q) query can be
answered in O(logn+ t) time, where t is the output size.

Remarks. (i) Note that Theorem 2.12 gives a better result
than Theorem 2.9 if the uncertainty regions of P are allowed
to intersect, but the Voronoi–diagram-based index is much
simpler and practical.

(ii) If we use L1 or L∞ metric to compute the distance
between points and use disks in L1 or L∞ metric (i.e., a dia-
mond or a square), then an NN6=0(q) query can be answered
in O(log2 n+ t) time using O(n log2 n) space.

Discrete case. If the distribution of each Pi is discrete,
then the functions ∆i and δi are complex and thus the index
for NN6=0(q) queries is more involved. First we observe that
the problem of reporting all points Pi ∈ P such that δi(q) ≤ R
for a query point q ∈ R2 and R > 0, can be formulated as a
colored disk range reporting. Namely, we color all k points
of Pi with color i. Let S =

⋃n
i=1 Pi. Then given a disk D

of radius R centered at q, we wish to report the colors of all
points in S that lie inside D — each color should be reported
only once. Following the same approach as in [19], this can
be done with O(log2(nk) + t) query time using O((nk)2+ε)

space (for any ε > 0), or with O((nk)1/2+ε + t) query time
using O((nk) log2(nk)) space.

Alternatively, using standard reduction from reporting to
emptiness, this can be solved using, space O(nk logn), pre-
processing O(nk log2 n), and O((1 + t) log2 n) query time.
Indeed, build a balanced tree over the colors, and for each
internal node, build a standard emptiness range searching
data-structure for all the disks having the colors stored in
this subtree. Here, the emptiness data-structure is a point-
location data-structure in a weighted additive Voronoi di-
agram. Now, given a query disk, traverse this color tree,
recursing into a subtree if the emptiness data-structure re-
ports that a disk in this subtree intersects the query. An
emptiness query takes O(logn) time, and O(t logn) nodes
in the tree are visited by the query process.

It thus suffices to describe how we compute ∆(q) for a
query point q ∈ R2. Recall that the projection of ∆i onto
the xy-plane, for 1 ≤ i ≤ n, is the farthest-point Voronoi
diagram of Pi, and that ∆ is the lower envelope of ∆1, . . . ,∆n.
Following the same argument as by Huttenlocher et al. [21],
we can prove the following.

Lemma 2.13. The xy-projection of the graph of the func-
tion ∆ is a planar subdivision with O(n2kα(n2k)) vertices,
and it can be computed in O(n2k log(nk)) time, where α(·)
is the inverse Ackerman function.

If the convex hulls of the point clouds are disjoint, the
problem is significantly easier, see [11].

Hence by preprocessing the projection of ∆ for point-
location queries, ∆(q) can be computed in O(log(nk)) time,
for any query point q.

If we wish to construct a linear-size index, we rely on multi-
level partition–tree-based [5] indexing schemes. We sketch
the main idea and omit the details. Let S =

⋃n
i=1 Pi, which

is a set of nk (certain) points in R2. For a point q ∈ R2, let
S(q) = {p1, . . . , pn} where pi is the farthest neighbor of q in
Pi. We build a partition tree T on S and the farthest-point
Voronoi diagrams of P1, . . . , Pn of size O(nk), which basically



constructs a family F = {e1, . . . , em} of “canonical” subsets
of S such that:

(i)
∑

i |ei| = O(nk);
(ii) for any query point q ∈ R2, S(q) can be represented

as the union of O((nk)1/2+ε) (for any ε > 0) canonical
subsets of F, denoted by F(q).

T can be constructed in O(nk log(nk)) time, and using the
hierarchical structure of T, F(q) for a query point q can be

computed in O((nk)1/2+ε) time. Next, we build a linear-size
index on each ei for answering NN queries in O(logn) time.
Putting everything together, the overall size of the index
is O(nk) and it can be constructed in O(nk log(nk)) time.
See [5, 26] for details.

Given a query point q ∈ R2, we first compute F(q), then
for each e ∈ F(q), we compute the nearest neighbor of q
in e, and finally choose the nearest one among them. The

total query time is O((nk)1/2+ε logn) = O((nk)1/2+ε′) for
any ε′ > ε.

Hence, we obtain the following:

Theorem 2.14. Let P be a set of n uncertain points in R2,
each of size at most k. P can be preprocessed into an index
of size O((nk)2+ε), for any ε > 0, so that an NN6=0(q) query
can be answered in O(log(nk) + t) time, or into an index

of size O(nk) with O((nk)1/2+ε + t) query time, where t is
the output size. The preprocessing times are O((nk)2+ε) and
O(nk log(nk)) time, respectively.

3. QUANTIFICATION PROBABILITIES
We begin with exact algorithms for uncertain point sets,

in which each uncertain point has k possible locations. We
can build a structure called the probabilistic Voronoi diagram
VPr(P) that decomposes R2 into a set of cells, so that any
point q in a cell has the same πi(q) value for all Pi ∈ P;
that is, for any point q in this cell, we know exactly the
probability of each point P ∈ P being the NN of q.

Lemma 3.1. Let P be a set of n uncertain points in R2,
each with at most k possible locations, then the complexity of
VPr(P) is O(n4k4).

Proof. There are nk possible locations. Each pair of
possible locations determines a bisector, resulting in O(n2k2)
bisectors. These bisectors partition the plane into O(n4k4)
convex cells so the order of all distances to each of the nk pos-
sible locations, and thus also all the qualification probabilities,
are preserved within each cell. Therefore the resulting planar
subdivision is a refinement of VPr(P), and thus O(n4k4) is
an upper bound on the complexity of VPr(P).

Note, that the related notion of most likely NN is not
stable in the sense that a single possible location of point
that is possibly far from a query can affect which point is the
most likely NN. Since the VPr(P) is too large to be efficient
in practice, we explore how to approximate πi(q).

3.1 Monte Carlo Algorithm
In this section we describe a simple Monte Carlo approach

to build an index for quickly computing π̂i(q) for all Pi for
any query point q, which approximates the quantification
probability πi(q). For a fixed value s, to be specified later,
the preprocessing step has s rounds. In the jth round the
algorithm creates a sample Rj = {rj1, rj2, . . . , rjn} ⊆ R2 by
choosing each rji using the distribution of Pi. For each j ≤ s,

we construct the Voronoi diagram Vor(Rj) in O(n log n) time
and preprocess it for point-location queries in additional
O(n logn) time.

To estimate quantification probabilities of a query q, we
initialize a counter ci = 0 for each point Pi. For each Rj ,
we find the point rji whose cell in Vor(Rj) contains the
query point q, and increment ci by 1. Finally we estimate
π̂i(q) = ci/s. Note that at most s distinct ci’s have nonzero
values, so we can implicitly set the others to 0.

Discrete case. If each Pi ∈ P has a discrete distribu-
tion of size k, then this algorithm can be implemented very
efficiently. Each ri can be selected in O(log k) time after
preprocessing each Pi, in O(k) time, into a balanced bi-
nary tree with total weight calculated for each subtree [27].
Thus total preprocessing takes O(s(n(log n+ log k)) + nk) =
O(nk + sn log(nk)) time and O(sn) space, and each query
takes O(s logn) time.

It remains to determine the value of s so that |πi(q) −
π̂i(q)| ≤ ε for all Pi and all queries q, with probability at
least 1 − δ. For fixed q, Pi, and instantiation Rj , let Xi

be the random indicator variable, which is 1 if ri is the NN
of q and 0 otherwise. Since E[Xi] = πi(q) and Xi ∈ {0, 1},
applying a Chernoff-Hoeffding bound to

π̂i(q) =
ci
s

=
1

s

∑
i

Xi,

we observe that

Pr
[
|π̂i(q)− πi(q)| ≥ ε

]
≤ 2 exp(−2ε2s). (4)

For each cell of VPr(P), we choose one point, and let Q
be the resulting set of points. If |π̂i(q) − πi(q)| ≤ ε for
every point q ∈ Q, then |π̂i(q)− πi(q)| ≤ ε for every point
q ∈ R2. Since there are n different values of i, by applying
the union bound to (4), the probability that there exist a
point q ∈ R2 and an index i ≤ n with |π̂i(q)− πi(q)| ≥ ε is
at most 2n|Q| exp(−2ε2s). Hence, by setting

s =
1

2ε2
ln

2n|Q|
δ

,

|π̂i(q) − πi(q)| ≤ ε for all q ∈ R2 and for all i ≤ n, with
probability at least 1− δ. By Lemma 3.1, |Q| = O(n4k4), so
we obtain the following result.

Theorem 3.2. Let P be a set of n uncertain points in R2,
each with a discrete distribution of size k, and let ε, δ ∈ (0, 1)
be two parameters. P can be preprocessed, in

O(nk + (n/ε2) log(nk) log(nk/δ))

time, into an index of size O((n/ε2) log(nk/δ)), which com-
putes, for any query point q ∈ R2, in O((1/ε2) log(nk/δ) log n)
time, a value π̂i(q) for every Pi such that |πi(q)− π̂i(q)| ≤ ε
for all i with probability at least 1− δ.

Continuous case. There are two technical issues in ex-
tending this technique and analysis to continuous distribu-
tions. First, we instantiate a certain point ri from each Pi.
Herein we assume the representation of the pdf is such that
this can be done in constant time for each Pi.

Second, we need to bound the number of distinct queries
that need to be considered to apply the union bound as
we did above. Since πi(q) may vary continuously with the
query location, unlike the discrete case, we cannot hope for
a bounded number of distinct results. However, we just need



to define a finite set Q̄ of query points so that any query
q ∈ R2 has maxi |πi(q) − πi(q

′)| ≤ ε/2 for some q′ ∈ Q̄.
Then we can choose s large enough so that it permits at
most ε/2 error on each query in Q̄. Specifically, choosing
s = O((1/ε2) log(n|Q̄|/δ)) is sufficient, so all that remains is
to bound |Q̄|.

To choose Q̄, we show that each pdf of Pi can be approxi-
mated with a discrete distribution of size O((n2/ε2) log(n/δ)),
and then reduce the problem to the discrete case.

For parameters α > 0 and δ′ ∈ (0, 1), set

k(α) =
c

α2
log

1

δ′
,

where c is a constant. For each i ≤ n, we choose a random
sample P̄i ⊂ Pi of size k(α), according to the distribution
defined by the location pdf fi of Pi. We regard P̄i as an
uncertain point with uniform location probability. Set P̄ =
{P̄1, . . . , P̄n}.

For a point q ∈ R2, let Ḡq,i denote the cdf of the distance
between q and P̄i, i.e., Ḡq,i(r) = Pr[d(q, P̄i) ≤ r], or equiva-
lently, it is the probability of P̄i lying in the disk of radius r
centered at q. A well-known result in the theory of random
sampling [24, 30] implies that for all r ≥ 0,∣∣Gq,i(r)− Ḡq,i(r)∣∣ ≤ α, (5)

with probability at least 1− δ′, provided that the constant c
in k(α) is chosen sufficiently large.

Let π̄i(q) denote the probability of P̄i being the NN of q
in P̄. We prove the following:

Lemma 3.3. For any q ∈ R2, and for any fixed i ≤ n,

|πi(q)− π̄i(q)| ≤ αn,

with probability at least 1− δ′.

Proof. Recall that by (1),

πi(q) =

∫ ∞
0

gq,i(r)
∏
j 6=i

(1−Gq,j(r))dr.

Using (5), and the fact that Gq,j(r), Ḡq,j(r) ∈ [0, 1] for all j,
we obtain

πi(q) ≤
∫ ∞

0

gq,i(r)
∏
j 6=i

(1− Ḡq,j(r))dr + (n− 1)α.

Note that
∏
j 6=i(1 − Ḡq,j(r)) is the probability that the

closest point of q in P̄\{P̄i} is at least distance r away from q.
Let hq,i be the pdf of the distance between q and its closest
point in P̄ \ {P̄i}. Then∏

j 6=i
(1− Ḡq,j(r)) =

∫ ∞
r

hq,i(θ)dθ.

Therefore

πi(q) ≤
∫ ∞

0

∫ ∞
r

gq,i(r)hq,i(θ)dθdr + (n− 1)α.

By reversing the order of integration, we obtain

πi(q) ≤
∫ ∞

0

∫ θ

0

hq,i(θ)gq,i(r)drdθ + (n− 1)α

=

∫ ∞
0

hq,i(θ)Gq,i(θ)dθ + (n− 1)α

≤
∫ ∞

0

hq,i(θ)(Ḡq,i(θ) + α)dθ + (n− 1)α

(using (5))

=

∫ ∞
0

hq,i(θ)Ḡq,i(θ)dθ + nα

= π̄i(q) + nα.

A similar argument shows that πi(q) ≥ π̄i(q)− nα. This
completes the proof of the lemma.

Thus by setting α = ε/2n, a random sample P̄i of size
O((n2/ε2) log(n/δ)) from each Pi ensures that

|πi(q)− π̄i(q)| ≤ ε/2 (6)

for all queries. By choosing δ′ = δ/2n, (6) holds for all i ≤ n
with probability at least 1− δ/2.

We consider VPr(P̄), choose one point from each of its
cells, and set Q̄ to be the resulting set of points. For a point
q ∈ R2, let q̄ ∈ Q̄ be the representative point of the cell of
VPr(P̄) that contains q. Then |πi(q) − π̄i(q̄)| < ε/2 for all
points q ∈ R2 and i ≤ n, with probability at least 1− δ/2.

Now applying the analysis for the discrete case on the
point set P̄, if we choose

s = O
Ä 1

ε2
log

n|Q̄|
δ

ä
,

then |π̄i(q)− π̂i(q)| < ε for all points q ∈ R2 and for all i ≤ n
with probability at least 1− δ/2. Since

|P̄i| = k
Ä ε

2n

ä
= O
Än2

ε2
log

n

δ

ä
,

by Lemma 3.1,

|Q̄| = O
Ä
n4
Ä
k
Ä ε

2n

ää4ä
= O
Än12

ε8
log4 n

δ

ä
.

Putting everything together, we obtain the following.

Theorem 3.4. Let P = {P1, . . . , Pn} be a set of n un-
certain points in R2 so a random instantiation of Pi can
be performed in O(1) time, let 0 < ε, δ < 1. P can be pre-
processed in O((n/ε2) log(n/εδ) logn) time into an index of
size O((n/ε2) log(n/εδ)), which computes for any query point
q ∈ R2, in O((1/ε2) log(n/εδ) logn) time, a value π̂i(q) for
every Pi such that |πi(q)− π̂i(q)| ≤ ε for all i with probability
at least 1− δ.

3.2 Spiral Search Algorithm
If the distribution of each point in P is discrete, then there

is an alternative approach to approximate the quantification
probabilities for a given query q: set a parameter m > 1,
choose m points of S =

⋃n
i=1 Pi that are closest to q, and use

only these m points to estimate πi(q) for each Pi. We show
this works for a small value of m when, for each Pi, each
location is approximately equally likely, but is not efficient if
we have no bounds on the weights of these locations.

Let Pi = {pi1, . . . , pik} and wij = Pr[Pi = pij ]. Set
S =

⋃n
i=1 Pi. We refer to the quantity

ρ =
maxwij
minwij

(7)

as the spread of location probabilities. Set

m(ρ, ε) = ρk ln(ρ/ε) + k − 1.



Fix a query point q ∈ R2, and let S̄ ⊆ S be the m(ρ, ε)
nearest neighbors of q in S. Let P̄i = S̄ ∩ Pi, and P̄ =
{P̄1, . . . , P̄n}. Note that

∑
pi,a∈P̄i

wi,a is not necessarily equal

to 1, so we cannot regard P̄i as an uncertain point, but still
it will be useful to think of P̄i as an uncertain point.

For a set Y of points and another point ξ ∈ R2, let

Y [ξ] = {p ∈ Y | d(q, p) ≤ d(q, ξ)}.

Then for a point p := pi,a ∈ Pi, πp(q), the probability that
p is the nearest neighbor of q in P is

πp(q) = wi,a
∏
j 6=i

Ä
1−

∑
pj,`∈Pj [p]

wj,`
ä
. (8)

Moreover,

πi(q) =
∑

pi,a∈Pi

πpi,a(q). (9)

For each i ≤ n, we analogously define a quantity π̂i(q)
using (8) and (9) but replacing Pj with P̄j for every j ≤ n.
Intuitively, if P̄ were a family of uncertain points, then π̂i(q)
would be the probability of P̄i being the NN of q in P̄.

Lemma 3.5. For all i ≤ n,

|πi(q)− π̂i(q)| ≤ ε.

Proof. Fix a point p ∈ Pi. Set xj = |Pj [p]| and m =∑
j 6=i xj . Note that each wj,a satisfies

1/ρk ≤ wj,a ≤ ρ/k.

Then for a point p := pi,a ∈ Pi, we obtain using (8)

πp(q) = wi,a
∏
j 6=i

Ä
1−

∑
p`∈Pj [p]

wj,`
ä

≤ ρ

k

∏
j 6=i

Ä
1− xj

ρk

ä
≤ ρ

k

∏
j 6=i

exp (−xj/ρk) =
ρ

k
exp (−m/ρk) .

Thus any point p ∈ Pi that has m ≥ ρk ln(ρ/ε) points in
P\{Pi} closer to q than itself, has probability at most ε/k of
being the closest point to q. Since each Pi ∈ P consists of at
most k points, the combined effect of all of these far points
cannot contribute more than ε to the total probability that
Pi is the nearest neighbor. Also k − 1 points from Pi may
also be closer to q than p. Thus if p is not an m(ρ, ε)-nearest
neighbor of q in S, i.e., p /∈ P̄i, then πp(q) < ε/k. Hence,

πi(q) ≤
∑
p∈P̄i

πp(q) + ε =
∑
p∈P̄i

π̂p(q) + ε = π̂i(q) + ε.

This completes the proof of the lemma.

For any i, if Pi ∩ S̄(q) = ∅, then we can implicitly set π̂i(q)
to 0. Finally, the following result shows that the m nearest
neighbors of q in S can be chosen efficiently in R2.

Lemma 3.6 (Afshani and Chan [1]). Given a set of
N points in R2, with O(N logN) expected preprocessing time
and O(N) space, we can return the closest m points to q in
O(m+ logN) time, for any query point q ∈ R2.

We thus obtain the following result:

Theorem 3.7. Let P be a set of n uncertain points in R2,
let ρ be the spread of location probabilities, and let ε > 0 be a
parameter. P can be preprocessed in O(nk log(nk)) expected
time into an index of O(nk) size, so that for a query point
q ∈ R2 and a parameter ε > 0, it can compute, in time
O(ρk log(ρ/ε) + log(nk)), values π̂i(q) for all Pi ∈ P such
that |πi(q)− π̂i(q)| ≤ ε for all i ≤ n.

Remarks. (i) Unfortunately, this approach is not efficient
when the spread of location probabilities is unbounded. In
this case, one may have to retrieve Ω(n) points. Another
approach may be to ignore points with weight smaller than
ε/k, since even k such weights from a single uncertain point
Pi cannot contribute more than ε to πi(q). However, the
union of all such points may distort other probabilities.

Consider the following example. Let p1 ∈ P1 ∈ P be the
closest point to the query point q. Let w(p1) = 3ε. Let the
next n/2 closest points p3, . . . , pn/2+2 be from different un-
certain points P3, . . . , Pn/2+2 and each have weights w(p) =
2/(n+2)� ε/k. Let the next closest point p2 ∈ P2 ∈ P have
weight w(p2) = 5ε. With probability πp1(q) = 3ε the nearest
neighbor is p1. The probability that p2 is the nearest neighbor
is πp2(q) = (5ε)(1−3ε)(1−2/n)n/2 < (5ε)(1−3ε)(1/e) < 2ε.
Thus p1 is more likely to be the nearest neighbor than p2.
However, if we ignore points p3, . . . , pn/2+2 because they
have small weights, then we calculate p2 has probability
π̂p2(q) = (1 − 3ε)(5ε) > 4ε for being the nearest neighbor.
So π2(q) will be off by more than 2ε and it would incorrectly
appear that p2 is more likely to be the nearest neighbor
than p1.

(ii) Though Lemma 3.6 is optimal theoretically, it is too
complex to be implemented. Instead, one may use order-m
Voronoi diagram to retrieve the m closest points (in unsorted
order) to q. This would yield an index with O(m(nk −m))
space and O(m(nk − m) log(nk) + nk log3(nk)) expected
preprocessing time [2], while preserving the query time
(log(nk) + m), where m = O(ρk log(ρ/ε)). Alternatively,
one may use quad-trees and a branch-and-bound algorithm
to retrieve m points of S closest to q [20].

4. EXPERIMENTAL RESULTS
We have conducted experiments on synthetic datasets

to demonstrate the efficacy of our methods for estimating
qualification probabilities.

Experimental setup. We assume each uncertain point
has a discrete distribution of size k. We set r = c√

n
, where

c > 0 is a parameter. The value of c indicates the level of
uncertainty: the bigger value c is, the larger uncertainty each
uncertain point has. We synthetically generated n uncertain
points in two steps as follows: (1) For each uncertain point,
we first generate a disk of radius r whose center is randomly
chosen inside the unit square [0, 1]2. (2) We then choose k
possible locations within the disk of each uncertain point.
We chose k possible locations uniformly inside the disk (we
also tried Gaussian distribution and got similar results). In
our experiments, we set n = 1000, k = 5, and c ∈ {0.5, 1.0}.
Measuring the effectiveness. We test how effective the
Monte Carlo method and the spiral-search methods are in
computing the most likely nearest neighbor, NNL, and the
estimates of qualification probabilities. In the experiments,
1000 queries were issued for each input, and we measured
the following three quantities:
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Figure 7. Monte Carlo method: (a) percentage of NNL; (b) probability error of NNL; (c) probability error of all points.
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Figure 8. Spiral search method: (a) percentage of NNL; (b) probability error of NNL; (c) probability error of all points.

(i) The percentage of trials in which the algorithm returns
the correct NNL.

(ii) The error in estimated qualification probability of NNL.
Specifically for each query, suppose Pi is the true NNL,
then the NNL probability error is |πi − π̂i|; we report
the 90% percentile of these errors.

(iii) For each query q, we compute maxi |πi(q)− π̂i(q)|, the
maximum error in probability. Among all 1000 trials,
we report the 5%, 50%, and 95% percentiles of these
errors. We only used c = 0.5 for quantity (iii).

Monte Carlo method. We tested how quantities (i)-
(iii) changed as we varied t, the number of instantiations
t. Fig. 7(a)–(c) show these quantities as t varies from 5 to
45. Not surprisingly, as t increases, the percentage of correct
NNL increases, and the probability errors decrease. The
smaller uncertainty (as denoted by c) we have, the better
performance. For both c = 0.5 and c = 1.0, the NNL is
returned correctly at least 80% of the times if t ≥ 20, and
this also generally provides probability error less than 0.15.

Spiral search method. We also tested how (i) – (iii)
changed as we varied m, the number of closest points re-
trieved to estimate the qualification probabilities. Fig. 8(a)–
(c) show these quantities as m varies from 1 to 15 (or 10
in Fig. 8(c)). Compared to the Monte Carlo approach, the
spiral search method accuracy seems to converge much faster
(although t versus m is not directly comparable). After only
m = 9 closest points are retrieved, the NNL is found more
than 95% of the time, and the probability error goes to prac-
tically 0. Recall k = 5 so from these experiments it appears
retrieving only 2k points to be effective. This method also

seems less affected by the scale of uncertainty (parameter c).
Since many practical k-nearest-neighbor algorithms exist, we
believe this has the potential for practical use.

5. CONCLUSION
In this paper, we investigated NN queries in a probabilistic

framework in which the location of each input point is spec-
ified as a probability distribution function. We presented
efficient methods for returning all the non-zero probability
points, estimating the quantification probabilities and using
it for threshold NN queries. We also conducted some pre-
liminary experiments to demonstrate the effectiveness of our
methods. We conclude by mentioning two open problems:

(i) What is the complexity of the probabilistic Voronoi
diagram? The bound proved in Lemma 3.1 is not tight,
and it does not work for continuous distributions.

(ii) Extend the spiral search method to continuous distri-
butions (at least for some simple, well-behaved distri-
butions such as Gaussian), so that the query time is
always sublinear.
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