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Abstract. Protein-protein interactions form the basis for many inter-
cellular events. In this paper we develop a tool for understanding the
structure of these interactions. Specifically, we define a method for iden-
tifying a set of structural motifs on protein-protein interface surfaces.
These motifs are secondary structures, akin to α-helices and β-sheets in
protein structure; they describe how multiple residues form knob-into-
hole features across the interface. These motifs are generated entirely
from geometric properties and are easily annotated with additional bi-
ological data. We point to the use of these motifs in analyzing hotspot
residues.

1 Introduction

Interactions between proteins govern many intercellular events, yet are poorly
understood. These interactions lie at the heart of cell division and cell growth,
which in turn dictate the pattern of health versus disease. A better understand-
ing of protein-protein interactions will enhance our understanding of biological
processes and how we can manipulate them for the benefit of human health.

Protein-protein interfaces. The protein-protein interface defines the essential
region of a protein-protein interaction. Most attempts [10, 12, 20] at defining this
interface include all atoms from one protein within some distance cutoff (4−5Å)
from atoms of the other protein. This approach does not provide independent
structural information and makes it difficult to identify features or subregions
of the interface. To follow standard notation, we refer to the interface between
two protein chains (say A and D) in a protein complex (say 1brs) as 1brsAD.

A more recent approach to defining the protein-protein interface [3] con-
structs a surface equidistant to both chains of a complex using the Voronoi
diagram. This otherwise infinite structure is bounded using topological tech-
niques. Each atom that contributes to the interface is associated with at least
one polygon on the interface surface, and each polygon is associated with two
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atoms, one from each side. The freely available MAPS: Protein Docking Inter-
faces software [2] has been developed to visualize protein interfaces and their
relevant properties. The MAPS software displays the interface surface embed-
ded between the protein structures as well as a simplified flattened view. The
flattened interface surface can be colored to show physico-chemical properties
such as residue type, atom type, distance to closest atom, or electrostatics, as
associated with each polygon. A merged view allows both sides of the interface
to be viewed simultaneously.

Features of surfaces. Proteins have evolved extensive shape complementarity
to their interacting proteins. Because protein surfaces are not flat, this leads
to knob-into-hole structures at the protein-protein interface, as noted by Con-
nolly [6]. These knobs consist of a set of atoms, often from a single residue, that
protrude from one protein into the other protein of the complex. This interaction
may be difficult to capture by examination of the structure of the protein com-
plex. However, these knob-into-hole features can be readily identified visually
in nearly all protein-protein complexes as bumps on the interface surface. Yet,
their biological significance is not well understood, in part because there exists
no standard definition or automated method of indentification. Our goal is to
automatically segment these regions on the interface surface in a consistent way.
We call these knob-in-hole features motifs.

Feature extraction is a common problem in computer vision [13, 5, 19], where
features points are used to provide a correspondence between two surfaces. How-
ever, these techniques only identify specific points as opposed to interesting re-
gions. For closed curves and surfaces, such as protein surfaces, interesting regions
corresponding to knobs and holes can be defined using a variety techniques like
elevation [1, 18]. However, these approaches do not generalize to surfaces with
boundary, such as the interface surface, and thus the bumps at the interaction
site corresponding knobs and holes could not be identified. On a surface with
boundary, the problem of defining regions of significance is quite challenging.
There is no clear measure of depth, the overall geometry can obscure local fea-
tures of interest, and local features can be excessively fragmented. As such, it is
hard to quantify bumps or pockets, much less segment them.

Our contribution. We adapt standard notions of discrete curvature on a polygo-
nal surface to be less local. Using this globally-aware definition we grow regions
with large curvature to segment regions of interest on the interface surface. We
then integrate these motifs with the MAPS software to incorporate structural
information into this convenient visualization tool. Finally we demonstrate some
interesting properties of these motifs.

2 Discrete Curvature and Watershed Procedures on

Polygonal Surfaces

The protein-protein interface surface as defined in [3] is the piecewise-linear
surface, that is everywhere equidistance from the closest atom in each of the



two proteins. We represent this structure as a set of triangles that are glued
together with edges and vertices denoted Σ = {T, E, V }, respectively. All inter-
face surfaces we deal with separate two proteins1, and thus Σ is an orientable
piecewise-linear 2-manifold with boundary in R

3. We can thus arbitrarily choose
one of these proteins and let the normal direction of every triangle t ∈ T point
towards this protein.

Vertices, edges, and triangles are simplices. A vertex is a 0-simplex, an edge is
a 1-simplex, and a triangle is a 2-simplex. The star of a simplex σ, denoted St(σ),
is the set of simplices incident to σ. More generally, if Υ is a set of simplices,
then St(Υ ) is the set of simplices incident to any simplex in Υ . The link of a
set of simplices Υ , denoted Lk(Υ ), is the boundary of the closure of St(Υ ). All
interior vertices have the same number of incident edges and incident triangles
while boundary vertices have one fewer incident triangles than they do incident
edges. All vertices have at least 3 incident edges. For each triangle t ∈ St(v)∩T ,
let αv,t be the angle between the two edges of t incident to v, as shown in Figure
1.

2.1 Discrete Curvature

To formalize the notion of how much the interface surface is locally bending, we
appeal to the idea of curvature. Any point p on a smooth surface can be assigned
a value of Guassian curvature and mean curvature [7]. We extend these notions to
vertices on a polygonal surface. The standard [15] definition for discrete Gaussian

curvature of a vertex v is

K(v) = 2π −
∑

t∈St(v)∩T

αv,t.

Intuitively, K(v) describes the angle defect, or how far the angles of the surface
surrounding v are from those of a flat surface.

There is no standard definition for the discrete mean curvature of a vertex; it
is only defined on edges. We present a new definition for discrete mean curvature,
H , on vertices. For a triangle t ∈ T , let nt denote the unit vector in the direction
normal to triangle t. We define the normal direction of a vertex v to be the
weighted mean of the normal directions of all of its incident triangles, as follows

nv =





∑

t∈St(v)∩T

αv,tnt





/





∑

t∈St(v)∩T

αv,t



 . (1)

For a triangle t and a vertex v incident to t, we define the face vector fv,t to be
the unit vector from v to the mid point of the edge opposite v on t. Now we

1 An interface surface can be defined to separate more than two proteins in a larger
complex. In this case the surface is not an orientable 2-manifold because an edge
can have three adjacent triangles. However, we can always divide this larger surface
into orientable 2-manifold components.



define discrete mean curvature of v as

H(v) =





∑

t∈St(v)∩T

αv,t(nv · fv,t)





/





∑

t∈St(v)∩T

αv,t



 , (2)

where · indicates a dot product (see Figure 1). Intuitively, H(v) denotes the
average deviation from nv of the normals of all triangles incident to v, weighted
by their incident angles. For a vertex v, if K(v) is positive, then the sign of H(v)
determines if the surface surrounding v is curving towards the normal direction,
or away from the normal direction.

t

αv,t

v

p

q

p + q

2

fv,t

nv

t

v

Fig. 1. Star of vertex v to illustrate the calculation of K (left) and H (right).

If a polygonal surface is a piecewise-linear approximation of a smooth surface,
then the area of triangles, instead of angles can be used as weights in (1) and
(2). Since, an interface surface does not approximate a smooth surface, we use
the angles of the incident triangles as weights. As the surface is subdivided, the
curvature of the surface does not change, and neither do the incident angles.

2.2 Watershed Procedures

Let h : Σ → R be a function defined on a surface Σ. If Σ is R
2, we can imagine

h representing the height of a terrain. Suppose we start pouring water on the
terrain and monitor the structure of the flooded regions. The connectivity of the
flooded regions changes at the critical points of the terrain: minima, maxima,
and saddle points. Lakes are created at minima, islands disappear at maxima,
and lakes merge or islands form at saddle points. At saddle points, instead of
always merging lakes or creating islands, a dam can be built to define a boundary
between two regions. This approach, known as the watershed algorithm [17], can
be extended to height functions on 2-manifolds and the dam locations can be
used to segment Σ.

However, there is no clear notion of a height function on an arbitrary 2-
manifold. Using K or H as the height does not segment Σ well because curvature
is a local property. Hence, we modify the above watershed algorithm in two
ways. First we run the watershed algorithm from two sides of Σ simultaneously
using K, but use the sign of H to determine on which of the two sides a flooded
component lies. We create dams when two components from opposite sides meet,



and we merge components from the same side. We face another technical problem
if we use K as the height function. Consider the motif (in purple) on the interface
surface 1atnAD shown in Figure 2. The value of K(v1) is large, but K(v2) is
small. A watershed algorithm directly using the function K would not identify
the motif shown; rather it would just segment the tip of the motif. By altering
the value of K(v) in a careful manner, the algorithm lets components grow in
large steps. How we redefine the values of K(v) will be explained in more detail
in Section 3.1.

v1

v2

Fig. 2. One motif on interface surface 1atnAD. K(v1) is large, but K(v2) is not.

3 Algorithm for Finding Motifs

Each motif we construct is a component of the subset of the interface surface
visited by the modified watershed algorithm. A motif is represented by the set
of vertices in its interior. We let M denote both a motif and its set of vertices. A
sign ς(M) ∈ {−, +} is assigned to each motif M when it is created. The rim of
M , denoted by rim(M), is the set of vertices in Lk(M). If there are two motifs
M and M ′, with ς(M) 6= ς(M ′), and there is a vertex r ∈ rim(M) ∩ rim(M ′),
then r is called a dam vertex. A dam vertex never becomes an interior vertex of
a motif.

Algorithm 3.1 outlines our algorithm. We set a threshold τ . At each step the
algorithm chooses a vertex v with K(v) ≥ τ . It makes v a dam vertex, adds v to
a motif, creates a new motif with v as its interior vertex, or merges two motifs
that share v on their rims. It then recomputes the value of K(·) on the “affected”
rim vertices. The worst-case running time of the algorithm is O(|V |2). However
the algorithm took 1 to 75 seconds on the 143 interface surfaces we tested; these
surfaces consisted of between 943 and 9096 simplices.

Figure 3 displays from two angles the interface 1brsAD. The motifs are col-
ored in two shades, representing either a knob of chain A protruding into a hole
in chain D or vice-versa. We only show motifs larger than 20Å2 to avoid clutter.
There are three large motifs (in front on the left view and on the left in the right



Algorithm 3.1 Find-Motifs(Σ, τ)

1: U : set of interior vertices of Σ.
2: while (maxv∈U K(v) ≥ τ ) do

3: Let v = arg maxv∈U K(v); U := U \ {v}.
4: if (v ∈ rim(M) ∩ rim(M ′) ∧ ς(M) 6= ς(M ′)) then

5: Mark v as a dam vertex.
6: else

7: if (v is not a rim vertex) then

8: Create a new motif M = {v}; ς(M) = sign(H(v)).
9: else

10: Merge all motifs whose rim contains v into a single motif M .
11: Add v to M .
12: Compute rim(M).
13: for all r ∈ rim(M) do

14: Recompute K(r) as described in Section 3.1.

view) that form significant knob-into-hole structures. The four smaller motifs
mirror this knob-into-hole pattern, albeit less dramatically.

Fig. 3. Interface surface and motifs for 1brsAD from two views. Darkly shaded motifs
and lightly shaded motifs have opposite signs of H , meaning they are protruding in
different directions. The rims are the edges in bold, except between the dam vertices
where they have light dashes.

3.1 Computing the Curvature on the Rim

To compute the curvature for vertices on the rim we implicitly remove the ver-
tices of the motif and treat this part of the surface as if Saran wrap was placed
over the removed motif. The idea is that, if an entire motif is chopped off then
the surface around it should appear flat; however, if part of the motif is chopped
off then the vertices on the rim are now at the tip of a motif and thus should still



have large curvature. Actually reconstructing this Saran wrap surface is difficult,
and in general can not be done without adding new vertices. However, we can
conservatively approximate the star of any vertex in the rim without constructing
the full Saran wrap surface. For a vertex r ∈ rim(M) we call St(r) \ St(M)—the
part of the star of r outside of M—the upper star of r and we denote it St+(r).
Similarly, the lower star of r is denoted St−(r) = St(r) ∩ St(M). We compute
the upper normal of r,

n+
r =





∑

t∈St+(r)∩T

αr,tnt





/





∑

t∈St+(r)∩T

αr,t



 .

If ς(M) is negative (the surface is curving away from n+
r ) we define hr as the

highest vertex in rim(M) \ {r}, in the direction of n+
r . If ς(M) is positive (the

surface is curving towards n+
r ), we define hr as the lowest vertex in rim(M)\{r}.

We then construct a new star of r by using St+(r) and replacing St−(r) with
the two faces and the edge connecting hr to the part of St+(r) that is incident
to M , as in Figure 4. The choice of hr from rim(M)\ {r} causes the new surface
around r to be as flat as possible. Using the reconstructed star of r, K(r) can
be computed as before.

M
hrr

St+(r) rim(M)

n
+

r

Fig. 4. Recreation of St(r) on rim(M). St+(r) is colored lighter. The Saran wrap surface
is colored darker.

3.2 Choosing the Threshold τ

Algorithm 3.1 can be run incrementally by gradually lowering τ . At certain
values of τ a new vertex v is handled in Step 3. Let τv denote the threshold τ
at which v first becomes part of a motif M . Often the value K(r) for a vertex
r ∈ rim(M) increases when reevaluated on the rim and sometimes becomes
greater than τv. In this case τr = τv and r is immediately handled before τ is
lowered. This process often continues until a large motif has been created. As



a result, motifs usually grow in large spurts at particular thresholds, as seen in
Figure 5. Eventually, as τ becomes quite small, U becomes empty. This means
flat parts of the surface have become part of motifs, often concatenating several
large motifs. Choosing an appropriate value of τ in Algorithm 3.1 will halt the
algorithm before this later stage happens.

Although any threshold between 0.3 and 0.4 radians seems to work reason-
ably well for most surfaces, we can do better by choosing τ for each surface
individually. For instance, surfaces bent around a protein often require larger
thresholds, while relatively flat surfaces often require smaller ones. Instead of
trying to quantify this bend, we find the threshold that optimizes a score func-
tion over the motifs.

As a vertex v is added to a motif M it is given a weight

w(v) = Area(St+(v)) · τv

which is equal to τv times the area that M is incremented. The value τv is never
increasing during the algorithm, so vertices added earlier are given more weight.

Motifs are also given a penalty for merging. The penalty p(M) is initially set
to 0. When M merges with another smaller motif, M ′, p(M) is incremented by
Area(M ′). When a smaller motif is merged with a larger motif, it disappears so
its score is essentially set to 0. Each motif M is given a score

sτ (M) =
∑

v∈M

w(v) − p(M)

for its state at a threshold τ . Thus larger motifs are given more weight, especially
if they are created at an early stage. However, if they merge, their scores are
heavily penalized. An entire surface is given a score

Sτ (Σ) = sign(ξτ (Σ))
√

|ξτ (Σ)| , where ξτ (Σ) =
∑

M∈Σ

sign(sτ (M)) · sτ (M)2.

As τ decreases, Sτ (Σ) usually increases to an optimal value and then de-
creases as the motifs grow too large and merge. The value of Sτ (Σ) as well as
the values sτ (M) for all motifs in Σ are plotted in Figure 5 for the interface
surface for 1nmbN{L,H}. The score is calculated by running Algorithm 3.1 for
τ set to .50 through .25 at .01 intervals. The threshold which returns the largest
score Sτ (Σ) is used, which in this case is τ = 0.34. The interface surface and
motifs for 1nmbN{L,H} are also shown for different values of τ . Only motifs with
surface area larger than 20Å2 are displayed to avoid clutter.

4 Applications

The reproducible and automated identification of motifs on the interface surface
provides a novel tool for biochemists to characterize protein-protein interactions.
We present here two preliminary forays into possible applications. Just as the
designation of α-helices and β-sheets has helped enhance the understanding of
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Fig. 5. Plot of S(Σ) and s(M) for all motifs on interface surface for 1nmbN{L,H}.
(top) Interface surface of 1nmbN{L,H} at τ = {0.27, 0.31, 0.34, 0.37, 0.40}. (bottom)

the structure of a protein beyond what could be extracted from the atomic
coordinates and their ordering on the backbone alone, we envision interface
motifs having the same contributions for understanding the structure of the
protein-protein interface.

4.1 Visualizing the Motifs on the Interface Surface

To readily visualize these structures we have integrated the motifs into the MAPS
site [2]. The MAPS software contains a database of over 150 protein-protein in-
terfaces. It displays both a flattened version of the interface and a 3D version
embedded within the protein structures, side-by-side. By flattening the interface,
the 3D structure is removed so that the physical and chemical properties from
one or both sides can be more easily visualized. Mapping the motifs into this flat-
tened view reintroduces structural information and allows for facile comparisons
between knobs and holes and physical and chemical properties.

Figure 6 shows a snapshot of the MAPS software displaying the interface
surface for 1brsAD. On the left is the standard 3-dimensional view embedded in
the structures of the protein. In the middle the flattened interface is colored by its
motifs as seen from chain D. The two shades of motifs correspond to either chain
A protruding into chain D or vice-versa. The thick black lines show the outline
of the surface patches corresponding to different residues. Note how the large
lightly shaded motifs are at the junction of many residue patches wherein the
hole in chain D, made by the knob in chain A, is composed of multiple residues.
On the other hand, the darkly shaded motifs are generally at the center of a
single residue patch wherein the knob in chain D consists of only one residue.



This pattern is reversed if the other side of the interface is shown. On the right
the flattened interface is colored by its amino acid composition as seen from
chain D. A single motif is highlighted in all views. Note the large overlap of the
highlighted motif with Asp35, one of the key hotspot residues in chain D of the
1brsAD complex.

Fig. 6. Snapshot of MAPS software: Shows interface surface 1brsAD with protein com-
plex drawn as a stick model (left), motifs on flattened interface (middle), and residue
type on flattened interface. Motif corresponding to Asp35 is highlighted in all views.

4.2 Hotspot Residues and Motifs

Hotspot residues for a protein complex are those few residues (5-10%) at a pro-
tein interface whose mutation leads to a significant reduction in the binding
energy (∆∆G ≥ 2 kcal/mol) [4]. The identification of hotspots is not neces-
sarily a matter of trivial inspection as essentially any type of residue can be a
hotspot. Thus various computational methods have been developed to predict
hotspots, relying either on traditional force fields [14, 9] or simpler physical en-
ergy functions parameterized on experimental data [8, 11], with reasonable to
good results.

Intuitively their exists a potential relationship between motifs and hotspot
residues. In particular, one might expect prominent knobs associated with a sin-
gle residue to be likely hotspot residues. For illustration we consider the complex
1brsAD. For the 14 residues on the interface characterized by mutation [16] we
compare each residue to the motif which has the largest area of overlap on the
interface surface. That is, for each residue we compute the area of overlap and
the percent of its area that is in this overlap region. In Figure 7 we plot these val-
ues versus the ∆∆Gs of the mutated residues. Three residues, including Asp35,
are clearly identified as hotspots whereas three hotspot residues with ∆∆G > 4



kcal/mol are not identified by this method. Satisfyingly, none of the non-hotspot
residues are incorrectly labeled as such.

Future inquires into this relationship will incorporate a larger dataset of
hotspot residues and the chemical properties of the potential hotspot residues.

02 04 06 08 01 0 0
� 1 0 1 2 3 4 5 6 7 8

00 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91
# 1 0 1 2 3 4 5 6 7 8

A sp39(D)Hi s102(A)
A rg87(A)L ys27(A)

A rg59(A)A sp35(D)
T yr29(D)A sn58(A)Gl u73(A)Th r42(D)Gl u76(D)Gl u80(D)A sp54(A) Gl u60(A)o

v
e
rl

a
p

a
re

a
p
er

ce
n
t

o
f
re

si
d
u
e

in
o
v
er

la
p

∆∆G (kcal/mol)

Fig. 7. Plots comparing hotspot residues to motifs on the interface surface 1brsAD.
Top chart plots the area of the overlap between the hotspot residue and the motif best
covering it on the interface surface versus ∆∆G of that residue. Bottom chart plots
the percent of the residue area which is in the overlap region versus the ∆∆G of the
residue.

5 Future Work

In addition to a possible correlation with hotspot residues, we envision that our
structural annotation tool could aid other biological applications. For instance,
statistical analysis may reveal preferred knob residues whose identification may
be useful for prediction of protein docking. Moreover, overlaying motifs from
different interfaces may lead to classifications by size or shape that can be useful
for describing recurring interfacial motifs. Also, by observing higher order rela-
tionships of motif arrangements on the protein interface (tertiary structures),
we envision new ways of comparing and classifying protein-protein complexes.
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