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Abstract

In this paper, we present algorithms for computing approximate hulls and centerpoints for collections of
matrices in positive definite space. There are many applications where the data under consideration, rather than
being points in a Euclidean space, are positive definite (p.d.) matrices. These applications include diffusion tensor
imaging in the brain, elasticity analysis in mechanical engineering, and the theory of kernel maps in machine
learning. Our work centers around the notion of a horoball: the limit of a ball fixed at one point whose radius
goes to infinity. Horoballs possess many (though not all) of the properties of halfspaces; in particular, they lack a
strong separation theorem where two horoballs can completely partition the space. In spite of this, we show that
we can compute an approximate “horoball hull” that strictly contains the actual convex hull. This approximate
hull also preserves geodesic extents, which is a result of independent value: an immediate corollary is that we
can approximately solve problems like the diameter and width in positive definite space. We also use horoballs
to show existence of and compute approximate robust centerpoints in positive definite space, via the horoball-
equivalent of the notion of depth.

∗This research was supported in part by NSF SGER-0841185 and a subaward to the University of Utah under NSF award 0937060 to the
Computing Research Association.
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1 Introduction

There are many application areas where the basic objects of interest, rather than points in Euclidean space, are
symmetric positive-definite n × n matrices (denoted by P(n)). In diffusion tensor imaging [3], matrices in P(3)
model the flow of water at each voxel of a brain scan. In mechanical engineering [11], stress tensors are modeled as
elements of P(6). Kernel matrices in machine learning are elements of P(n) [25].

In all these areas, a problem of great interest is the analysis [13, 14] of collections of such matrices (finding central
points, clustering, doing regression). For all of these problems, we need the same kinds of geometric tools available
to us in Euclidean space, including basic structures like halfspaces, convex hulls, Voronoi diagrams, various notions
of centers, and the like. P(n) is non-Euclidean; in particular, it is negatively (and variably) curved, which poses
fundamental problems for the design of geometric algorithms. This is in contrast to hyperbolic space (which has
constant curvature of −1), in which many standard geometric algorithms carry over.

In this paper, we develop a number of basic tools for manipulating positive definite space, with a focus on appli-
cations in data analysis.

1.1 Our Work

Horoballs. A main technical contribution of this work is the use of horoballs as generalization of halfspaces.
Suppose we allow a ball to grow to infinite radius while always touching a fixed point on its boundary. In Euclidean
space, this construction yields a halfspace; in general Cartan-Hadamard manifolds (of which P(n) is a special case),
this construction yields a horoball. Because of the curvature of space, horoballs are not flat and the complement of
a horoball is not a horoball. However, we show that these objects can be effectively used as proxies for halfspaces,
allowing us to define a number of different geometric structures in P(n).

Ball Hulls. The first structure we study is the convex hull. Apart from its importance as a fundamental primitive
in computational geometry, the convex hull also provides a compact description of the boundary of a data set, can be
used to define the center of a data set (via the notion of convex hull peeling depth [23, 2]), and also captures extremal
properties of a data set like its diameter, width and bounding volume (even in its approximate form [1]).

The convex hull of a set of points in P(n) can be naturally defined as the intersection of all convex sets containing
the points. Alternatively, it can be defined as the set of all points that are “convex combinations” (in a geodesic
sense) of the input points. A significant obstacle to the convex hull in P(n) is that it is not even known whether the
convex hull of a finite collection of points in P(n) can be represented finitely [4].

Another approach to defining the convex hull is via halfspaces: we can define the convex hull in Euclidean space
as the intersection of all halfspaces that contain all the points. Unfortunately, even this notion fails to generalize: the
relevant structures are called totally geodesic submanifolds, and we cannot guarantee that any set of d + 1 points
admits such a submanifold passing through them.

Our main technical contribution here is a generalization of the convex hull called the ball hull that is based on
the relationship between horoballs and halfplanes. The ball hull is the intersection of all horoballs that contain the
input points. Although the ball hull itself might require an infinite number of balls to define it, it is closed, it can be
approximated efficiently, it is identical to the convex hull in Euclidean space, and it always contains the convex hull
in P(n). In the process of proving this result, we also develop a generalized notion of extent [1] in positive definite
space that might be of independent interest for other analysis problems.

Centerpoints. One important motivation for studying collections of points in positive definite space is to compute
measures of centrality (or mean shapes) [14]. A robust centerpoint can be obtained by finding a point of maximum
(halfspace) depth among a collection of points. We first prove, using a generalization of Helly’s theorem to negatively
curved spaces, that for any set of points in P(n), there exists a point of large depth, where depth is defined in terms of
horoballs. We then develop an algorithm to compute an approximation to such a point, using an LP-type framework.
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The point we compute is a geometric approximation: it does not approximate the depth of the optimal point, but is
guaranteed to be close to such a point.

1.2 Related Work

The mathematics of Riemannian manifolds, Cartan-Hadamard manifolds and P(n) is well-understood: the book
by Bridson and Haefliger [6] is an invaluable reference on metric spaces of nonpositive curvature, and Bhatia [5]
provides a detailed study of P(n) in particular. However, there are many fewer algorithmic results for problems in
these spaces. To the best of our knowledge, the only prior work on algorithms for positive definite space are the
work by Moakher [21] on mean shapes in positive definite space, and papers by Fletcher and Joshi [13] on doing
principal geodesic analysis in symmetric spaces, and the robust median algorithms of Fletcher et al [14] for general
manifolds (including P(n) and SO(n)).

Geometric algorithms in hyperbolic space are much more tractable. The Poincaré and Klein models of hyperbolic
space preserve different properties of Euclidean space, and many algorithm carry over directly with no modifica-
tions. Leibon and Letscher [18] were the first to study basic geometric primitives in general Riemannian manifolds,
constructing Voronoi diagrams and Delaunay triangulations for sufficiently dense point sets in these spaces. Epp-
stein [12] described hierarchical clustering algorithms in hyperbolic space. Krauthgamer and Lee [16] studied the
nearest neighbor problem for points in δ-hyperbolic space; these spaces are a combinatorial generalization of neg-
atively curved space and are characterized by global, rather than local, definitions of curvature. Chepoi et al [8, 9]
advanced this line of research, providing algorithms for computing the diameter and minimum enclosing ball of
collections of points in δ-hyperbolic space.

2 Preliminaries

P(n) is the set of symmetric positive-definite real matrices. It is a Riemannian metric space with tangent space at
point p equal to S(n), the vector space of symmetric matrices with inner product 〈A,B〉p = tr(p−1Ap−1B). The
exp map, expp : S(n)→ P(n) is defined expp(tA) = c(t) = petpA, where c(t) is the geodesic with unit tangent A
and c(0) = p. For simplicity, we often assume that p = I so expI(tA) = etA. The log map, logp : P(n) → S(n),
indicates direction and distance and is the inverse of expp. The metric d(p, q) = ‖ logp(q)‖ =

√
tr(log(p−1q)2).

Convex Hulls in P(n). P(n) is an example of a proper CAT(0) space [6, II.10], and as such admits a well-defined
notion of convexity, in which metric balls are convex. We can define the convex hull C(X) of a set of points X as
the smallest convex set that contains the points. This hull can be realized as the limit of an iterative procedure where
we draw all geodesics between data points, add all the new points to the set, and repeat.

Lemma 2.1 ([5]). If X0 = X and Xi+1 =
⋃
a,b∈Xi

[a, b], then C(X) =
⋃∞
i=0Xi.

Proof. We will use the notation X∞ =
⋃∞
i=0Xi. It is easy to demonstrate by straightforward induction that X∞ is

contained in any convex set that contains X . Therefore C(X) ⊇ X∞.
We also know that if p, q ∈ X∞ there must be some m for which p, q ∈ Xm, since X∞ is the nested union of Xi.

Then [p, q] ⊂ Xm+1 ⊂ X∞. This means that X∞ is convex, so C(X) ⊆ X∞.

Berger [4] notes that it is unknown whether the convex hull of three points is in general closed, and the standing
conjecture is that it is not. The above lemma bears this out, as it is an infinite union of closed sets, which in general
is not closed. These facts present a significant barrier to the computation of convex hulls on general manifolds.

2.1 Busemann Functions

In Rd, the convex hull of a finite set can be described by a finite number of hyperplanes each supported by d points
from the set. A hyperplane through a point may also be thought of as the limiting case of a sphere whose center has
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been moved away to infinity while a point at its surface remains fixed. We generalize this notion with the definition
of a Busemann function.

For this notion to work, we must restrict ourselves to a class of spaces called CAT(0) spaces. They are metric
spaces with non-positive curvature. Additionally, they must be complete; that is, Cauchy sequences in the space
must converge to a point in the space. Euclidean space, hyperbolic space, and P(n) are all examples of complete
CAT(0) spaces. To talk about “sending a point away to infinity,” we must provide a rigorous definition of what we
mean by infinity in a complete CAT(0) space.

Two geodesic rays c1, c2 : R+ → M in a complete CAT(0) space M are asymptotic if limt→∞ d(c1(t), c2(t)) <
K for some K ∈ R+. If c1 and c2 are asymptotic, then we say c1 ∼ c2. This forms an equivalence relation ∼ so
that [c] describes the set of all geodesics c′ such that c ∼ c′. Let ξ = [c] where ξ is identified with the limit of any
geodesic ray asymptotic to c. We say that ξ is a point at infinity. Moreover, for any point x ∈ M we can find a
member of [c] that issues from x [6, II.8].

Definition 2.1. For a complete CAT(0) space M , given a geodesic ray c(t) : R+ → M , a Busemann function
bc : M → R is defined

bc(p) = lim
t→∞

d(p, c(t))− t.

It should be noted that if we construct a Busemann function from any geodesic ray in [c], it is the same function up
to addition by a constant [6, II.8]. It’s convenient then to normalize a Busemann function by assuring that bc(I) = 0.

A Busemann function is an example of a horofunction [6, II.8]. A horosphere Sr(h) ⊂ M is a level set of a
horofunction h; that is, Sr(h) = h−1(r), where r ∈ R. A horoball Br(h) ⊂ M is a sublevel set of h; that is,
Br(h) = h−1((−∞, r]). Horofunctions are convex [6, II.8], so any sublevel set of a horofunction is convex, and
therefore any horoball is convex.

Example: Busemann functions in Rn. As an illustration, we can easily compute the Busemann function in
Euclidean space associated with a ray c(t) = tu, where u is a unit vector. Since limt→∞

1
2t(‖p− tu‖+ t) = 1,

bc(p) = lim
t→∞

(‖p− tu‖ − t)

= lim
t→∞

1
2t

(‖p− tu‖2 − t2)

= lim
t→∞

1
2t

(‖p‖2 − 2 〈p, tu〉+ ‖tu‖2 − t2)

= lim
t→∞

‖p‖2

2t
− 〈p,u〉 = −〈p,u〉 .

Horospheres in Euclidean space are then just hyperplanes, and horoballs are halfspaces.

2.1.1 Decomposing P(n)

In order to construct Busemann functions in P(n) it is necessary to decompose the space into simpler components.
The notion of a horospherical projection will be very useful.

The horospherical group. There is a subgroup of GL(n), Nξ (the horospherical group), that leaves the Buse-
mann function bc invariant [6, II.10]. That is, given p ∈ P(n), and ν ∈ Nξ, bc(νpνT ) = bc(p). Let A be diagonal,
where Aii > Ajj , ∀i > j. Let c(t) = etA, and ξ = c(∞). Then ν ∈ Nξ if and only if ν is a upper-triangular matrix
with ones on the diagonal1. If A ∈ S(n) is not sorted-diagonal, we may still use this characterization of Nξ without
loss of generality, since we may compute an appropriate diagonalization A = QA′QT , QQT = I , then apply the
isometry QT pQ to any element p ∈ P(n).

1For simplicity, we consider only those rays with unique diagonal entries, but this definition may be extended to those with multiplicity.
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horospheres

Figure 1: Left: projection of X ⊂ P(2) onto det(x) = 1. Right: X ⊂ P(2). Two horospheres are drawn in both views.

Flats. LetA ∈ S(n) and c(t) = etA as above. If we consider all elements f ∈ P(n) that share eigenvectorsQ with
eA, then all such elements commute with each other and feA = eAf . We call this space F , the n-flat containing c.
Since we may assume that Q ∈ SO(n), every flat F corresponds to an element of SO(n). Moreover, since members
of F commute, log(ab) = log a + log b for all a, b ∈ F . So if u and v are in F , then the distance between them is√

tr(log(u−1v)2) =
√

tr((log(v)− log(u))2). Since
√

tr((·)2) is a Euclidean norm on log(F ), we have that F is
isometric to Rn with a Euclidean metric under log(·).

Horospherical projection. Given p ∈ P(n), there is a unique decomposition p = νfνT where (ν, f) ∈ Nξ×F [6,
II.10]. Let p ∈ P(n) and (ν, f) ∈ Nξ × F . If p = νfνT , then define the horospherical projection function
πF : P(n)→ F as πF (p) = ν−1pν−T = f .

2.1.2 Busemann functions in P(n).

We can now give an explicit expression for a Busemann function in P(n). For geodesic c(t) = etA, whereA ∈ S(n),
the Busemann function bc : P(n)→ R is

bc(p) = − tr(A log(πF (p))),

where πF is defined as above [6, II.10].
In P(2) it is convenient to visualize Busemann functions through horospheres. We can embed P(2) in R

¯
3 where

the log of the determinant of elements grows along one axis. The orthogonal planes contain a model of hyperbolic
space called the Poincaré disk that is modeled as a unit disk, with boundary at infinity represented by the unit circle.
Thus the entire space can be seen as a cylinder, as shown in Figure 1. Within each cross section with constant
determinant, the horoballs are disks tangent to the boundary at infinity.

3 Ball Hulls

We now introduce our variant of the convex hull in P(n), which we call the ball hull. For a subset X ⊂ P(n), the
ball hull B(X) is the intersection of all horoballs that also contain X:

B(X) =
⋂
bc,r

Br(bc), X ⊂ Br(bc).

Note that the ball hull can be seen as an alternate generalization of the Euclidean convex hull (i.e. via intersection of
halfspaces) to P(n). Furthermore, since it is the intersection of closed sets, it is itself guaranteed to be closed.

3.1 Properties Of The Ball Hull

We know that any horoball is convex. Because the ball hull is the intersection of convex sets, it is itself convex
(and therefore C(X) ⊆ B(X)). We can also show that it shares critical parts of its boundary with the convex hull
(Theorem 3.1), but unfortunately, we cannot represent it as a finite intersection of horoballs (Theorem 3.2).
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Theorem 3.1. Every x ∈ X (X finite) on the boundary of B(X) is also on the boundary of C(X) (i.e.,X∩∂B(X) ⊆
X ∩ ∂C(X)).

Proof. Since X ⊂ C(X), either x ∈ ∂C(X) or x ∈ int C(X). Assume that x ∈ int C(X). Then there is a
neighborhood U of x contained wholly in C(X). Because x ∈ ∂B(X), there is a horofunction h such that X ⊂
Br(h) and h(x) = r. Since Br(h) is convex, U ⊂ C(X) ⊆ Br(h). This implies that h(x) < r, but h(x) = r, a
contradiction. Thus x ∈ ∂C(X).

Theorem 3.2. In general, the ball hull cannot be described as the intersection of a finite set of horoballs.

Proof. We construct an example in P(4) with a point set X = {x1, x2} of size 2 where the ball hull cannot be
described as the intersection of a finite number of horoballs. Let X ⊂ H3, the three dimensional hyperbolic space,
as embedded in P(4). In particular, let the geodesic that contains x1 and x2 also contain I , the identity matrix, at
their midpoint on the geodesic.

Consider the family of horofunctions H such that for h ∈ H, h(x1) = h(x2). By construction, h(x1) = h(x2) =
r for some r ∈ R. In the Poincaré ball model of H3, the horospheres Sr(h) are literally spheres that are tangent
to the boundary at infinity, and touch x1 and x2. So constructed, any horosphere in H will contact the boundary at
infinity on a great circle that is equidistant from both points.

The ball hull B(X) is defined {
⋂
Br(h) | h ∈ H}, and is a “spindle” (a three dimensional lune) with tips at x1

and x2 and bulges out from the geodesic segment between them. Any finite family of horofunctions will intersect
in a region strictly larger than B(X), so every horoball generated by a member in H is necessary for B(X), and so
there is no finite set of horoballs that describe B(X).

4 The ε-Ball Hull

Theorem 3.2 indicates that we cannot maintain a finite representation of a ball hull. However, as we shall show in
this section, we can maintain a finite-sized approximation to the ball hull. Our approximation will be in terms of
extents: intuitively, we say that a set of horoballs approximates the ball hull if a geodesic traveling in any direction
traverses approximately the same distance inside the ball hull as it does inside the approximate hull.

horoextent

In Euclidean space, we can capture extent by measuring the distance between two parallel hy-
perplanes that sandwich the set. Since measuring extent by recording the distance between two
parallel planes does not have a direct analogue in P(n), we define a notion we call a horoextent. Let
c(t) = qetq

−1A be a geodesic, and X ⊂ P(n). The horoextent Ec(X) with respect to c is defined as:

Ec(X) =
∣∣∣∣max
p∈X

bc+(p) + max
p∈X

bc−(p)
∣∣∣∣ ,

where bc+ is the Busemann function created when we allow t to approach positive infinity as normal, while bc− is
the Busemann function created when we allow the limit to go the other direction; that is:

bc+(p) = lim
t→+∞

(d(c(t), p)− t), bc−(p) = lim
t→−∞

(d(c(t), p) + t).

Observe that for any c, Ec(X) = Ec(C(X)) = Ec(B(X)). (Note that we cannot simply substitute min bc+ for
max bc−; the horoballs are generated by Busemann functions tied to opposite points at infinity.)

If we were to compute Ec(X) in a Euclidean space, it would be apparent that the extent would be the distance
between two parallel planes. Because the minimum distance between two Euclidean horoballs is a constant, no
matter where we place the base point q, we can measure horoextent simply by measuring width in a particular
direction. However, this is not true in general. For instance in P(n), horofunctions are nonlinear, so the distance
between opposing horoballs is not constant. The width of the intersection of the opposing horoballs is taken along
the geodesic c, and a geodesic is described by a point q and a direction A. We fix the point q so that we need only
choose a uniform grid of directions A for our approximation.
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Definition 4.1. An intersection of horoballs is called an ε-ball hull with origin q (Bε,q(X)) if for all geodesic rays c
such that c(0) = q, |Ec(Bε,q(X))− Ec(X)| ≤ ε. When q is clear, we will refer to Bε,q(X) as just an ε-ball hull.

Shifting the origin. Let the geodesic anisotropy [21] of a point p ∈ P(n) be defined as GA(p) = d( n
√

det(p)I, p)
(so if det(p) = 1 then GA(p) = d(I, p)). Let dX = maxp∈X d(p, I) ≥ maxp∈X GA(p). The size of the ε-ball
hulls we construct will depend dX , but this is not an intrinsic parameter of the data, since we can change it merely
by isometrically translating the point set. For some point q ∈ C(X), if we could translate the data set so that q was
at the origin I , then dX ≤ diam(X) = maxp,q∈X d(p, q). We now prove that such a translation is always possible.

Lemma 4.1. For a point q ∈ P(n), a geodesic c such that c(0) = q, and a point set X , if we define an operation Ŝ
on a set S ∈ P(n) such that p̂ = q−

1
2 pq−

1
2 for any p ∈ S, then

Ec(X) = Eĉ(X̂).

Proof. Let c(t) = qetq
−1A. Then ĉ(t) = q−

1
2 (qetq

−1A)q−
1
2 = q

1
2 etq

−1Aq−
1
2 = etq

− 1
2Aq−

1
2 = etÂ. Note that

‖A‖q =
√

tr((q−
1
2Aq−

1
2 )2) = ‖Â‖I , so ĉ is a geodesic such that ĉ(0) = I with the same speed as c. Let bc be the

Busemann function of c, so bc(p) = limt→∞(d(c(t), p)− t). Since conjugation by q−
1
2 is an isometry on P(n),

bc(p) = lim
t→∞

(d(c(t), p)− t) = lim
t→∞

(d(ĉ(t), p̂)− t) = bĉ(p̂),

and therefore
Ec(X) = Eĉ(X̂).

For convenience, we will now assume that our data has been shifted into a reasonable frame where some point
q ∈ C(X) is the base point of our horofunction. That is in this shifted frame I ∈ C(X) and, we can bound,
dX ≤ diam(X).

Main result. The main result of this section is a construction of a finite-sized ε-ball hull.

Theorem 4.1. For a setX ⊂ P(n) of sizeN (for constant n), we can construct an ε-ball hull of sizeO((sinh(dX)/ε)n−1·
N bn/2c) in time O((sinh(dX)/ε)n−1(N bn/2c +N logN)).

Proof Overview. We make much use of the structure of flats in our proof, so it is helpful to describe some
conventions. Consider the set of unit-length tangent vectors at I , part of the tangent space S(n); in other words, the
set of “directions” from I . If we choose a flat F to work in, then the tangent space of F contains a subset of those
directions. All these directions, though, share the rotation Q identified with F . So in much of the rest of the paper,
we refer to this rotation Q as a “direction,” even though it is not a member of the tangent space.

Our proof uses two key ideas. First, we show that within a flat F (i.e., given a direction Q ∈ SO(n)) we can
find a finite set of minimal horoballs exactly. This is done by showing an equivalence between halfspaces in F and
horoballs in P(n) in Section 4.1. The result implies that computing minimal horoballs with respect to a direction Q
is equivalent to computing a convex hull in Euclidean space.

Second, we show that instead of searching over the entire space of directions SO(n), we can discretize it into
a finite set of directions such that when we calculate the horoballs with respect to each of these directions, the
horoextents of the resulting ε-ball hull are not too far from those of the ball hull. In order to do this, we prove a
Lipschitz bound for horofunctions (and hence horoextents) on the space of directions. Since any two flats F and F ′

are identified with rotations Q and Q′, we can move a point from F to F ′ simply by applying the rotation QTQ′,
and measure the angle θ between the flats. If we consider a geodesic c ⊂ F such that c(0) = I , we can apply QTQ′

to c to get c′, then for any point p ∈ P(n) we bound |bc(p)− bc′(p)| as a function of θ.
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Proving this theorem is quite technical. We first prove a Lipschitz bound in P(2), where the space of directions is
a circle (as in the left part of Figure 1). After providing a bound in P(2) we decompose the distance between two
directions in SO(n) into

(
n
2

)
angles defined by 2 × 2 submatrices in an n × n matrix. In this setting it is possible

to apply the P(2) Lipschitz bound
(
n
2

)
times to get the full bound. The proof for P(2) is presented in Section 4.2,

and the generalization to P(n) is presented in Section 4.3. Finally, we combine these results in an algorithm in
Section 4.4.

The following lemma describes how geodesics (and horofunctions) are transformed by a rotation.

Lemma 4.2. For a point p ∈ P(n), a rotation matrix Q, geodesics c(t) = etA and c′(t) = etQAQ
T

,

bc′(p) = bc(QT pQ).

Proof. If A′ = QAQT is the tangent vector of c′, and F ′ is the flat containing c′,

bc′(p) = − tr(A′ log(πF ′(p))) = − tr((QAQT ) log((Qν−1QT )p(Qν−1QT )T ))

= − tr(AQT log(Qν−1(QT pQ)ν−TQT )Q) = − tr(A log(ν−1(QT pQ)ν−T ))

= bc(QT pQ).

In particular, this allows us to pick a flat where computation of bc is convenient, and rotate the point set by Q to
compute bc instead of attempting computation of bc′ directly, which may be more cumbersome; we will utilize this
idea later.

4.1 Projection to k-flat

For the first part of our proof, we establish an equivalence between horospheres and halfspaces. That is, after we
compute the projection of our point set, we can say that the point set lies inside a horoball Br(bc) if and only if its
projection lies inside a halfspace Hr of F (recall that F is isometric to a Euclidean space under log).

Lemma 4.3. For any horoball Br(bc), there is a halfspace Hr ⊂ log(F ) ⊂ S(n) such that log(πF (Br(bc))) = Hr.

Proof. If bc(p) ≤ r, p ∈ P(n), and c(t) = etA, then − tr(A log(πF (p))) ≤ r. Since πF (p) is positive-definite,
log(πF (p)) is symmetric. But tr((·)(·)) defines an inner product on the Euclidean space of symmetric n × n
matrices. Then the set of all Y such that − tr(AY ) ≤ r defines a halfspace whose boundary is perpendicular to
A.

This gives us a means to compute horoballs by using πF to project our point set onto F , and leverage a familiar
Euclidean environment.

4.2 A Lipschitz bound in P(2)

4.2.1 Rotations in P(2)

We start with some technical lemmas that describe the locus of rotating points in P(2).

Lemma 4.4. Given a rotation matrix Q ∈ SO(2) corresponding to an angle of θ/2, Q acts on a point p ∈ P(2) via
QpQT as a rotation by θ about the (geodesic) axis etI = etI .

Proof. If p = etI , t ∈ R, then QpQT = etQIQT = etI, so etI is invariant under the action of Q. Any action
GpGT where G ∈ GL(n) is an isometry on P(n), so the distance from p to the axis etI remains fixed [6, II.10].
Computing QpQT as a function of θ, we get:(

cos θ2 − sin θ
2

sin θ
2 cos θ2

)(
u w
w v

)(
cos θ2 sin θ

2

− sin θ
2 cos θ2

)
=
(
u+v

2 + u−v
2 cos θ − w sin θ u−v

2 sin θ + w cos θ
u−v

2 sin θ + w cos θ u+v
2 −

u−v
2 cos θ + w sin θ

)
,

which is 2π-periodic. (In fact, it is easy to see a rotation in the “coordinates” u−v
2 and w.)
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By Lemma 4.4, we know that as we apply a rotation to p, it moves in a circle. Because any rotation Q has
determinant 1, det(QpQT ) = det(p). This leads to the following corollary:

Corollary 4.1. In P(2), the radius of the circle that p travels on is GA(p) . Such a circle lies entirely within a
submanifold of constant determinant.

In fact, any submanifold P(2)r of points with determinant equal to some r ∈ R+ is isometric to any other such
submanifold P(2)s for s ∈ R+. This is seen very easily by considering the distance function tr(log(p−1q)) — the
determinants of p and q will cancel.

We pick a natural representative of these submanifolds, P(2)1. This submanifold forms a complete metric space
of its own that has special structure:

Lemma 4.5. P(2)1 has constant sectional curvature −1
2 .

Proof. Let p ∈ P(2)1. Then if p =
(
x w
w y

)
, det(p) = xy−w2 = 1. Let u = x+y

2 and v = x−y
2 so that x = u+ v

and y = u−v. Then det(p) = u2−v2−w2 = 1. This describes a hyperboloid of two sheets, and restricting u > 0,
is a model for hyperbolic space H2.

To analyze the metrics between the two spaces, we may consider our other point to be the identity matrix, since
in P(2)1, d(p, q) = d(q−1/2pq−1/2, I). The equivalent point on the hyperboloid to I is (u, v, w) = (1, 0, 0). The
distance between the two points in the hyperbolic metric is

dH2(p, I) = cosh−1(u1u2 − v1v2 − w1w2) = cosh−1

(
x+ y

2

)
= ln

x+ y

2
+

√(
x+ y

2

)2

− 1

 .

And in the metric of P(n):

dP(2)(p, I) =
√

tr(log2(p)) =
√

ln2 λ1 + ln2 λ2 =
√

2 lnλ1 =
√

2 ln

x+ y

2
+

√(
x+ y

2

)2

− 1

 .

Since this is a constant multiple of the hyperbolic metric, P(2)1 is a complete metric space of constant negative
sectional curvature. We can find the curvature κ by solving 1/

√
−κ =

√
2 to get κ = −1/2 [6, I.2].

4.2.2 Bounding ‖∇bc‖

To bound the error incurred by discretizing the space of directions, we need to understand the behavior of bc as a
function of a rotation Q. We show that the derivative of a geodesic is constant on P(n).

Lemma 4.6. For a geodesic ray c(t) = etA, ‖A‖ = 1, then ‖∇bc‖ = 1 at any point p ∈ P(n).

Proof. Let u = bc(p). If we define the map γp to map p to its projection onto any horoball Bu−t(bc), where t > 0,
then γp is a geodesic ray [6, II.8]. Since any γp(t) is the projection onto the horoballBu−t(bc), the geodesic segment
[p, γp(t)] is perpendicular to Bu−t(bc) at γp(t), and therefore the tangent vector of γp points directly opposite to∇bc
at γp(t). Because γp intersects Bu−t(bc) at t, bc(γp(t)) must change at a rate opposite to γp(t), along γp, and since
∇bc points in the opposite direction as γ′p(t) at γp(t), ∇bc = −γ′p(t).

Also, since d(p,Bu−t(bc)) = t for any p ∈ Bu(bc), for any u, and ‖γ′p‖ is constant along γp, ‖∇bc‖ is the same
anywhere in P(n). Since c(t) is the projection of c(0) onto B−t(bc) by construction, and geodesics are unique in
P(n), ‖∇bc‖ = ‖A‖ = 1.
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4.2.3 A Lipschitz condition on Busemann functions in P(2)

We are now ready to prove the main Lipschitz result in P(2). We start with a more specific bound that depends on
the geodesic anisotropy of a point:

Lemma 4.7. Given a point p ∈ P(2), a rotation matrix Q corresponding to an angle of θ/2, geodesics c(t) = etA

and c′(t) = etQAQ
T

,

|bc(p)− bc′(p)| ≤ |θ| ·
√

2 sinh
(

GA(p)√
2

)
.

Proof. The derivative of a function f along a curve γ(t) has the form
〈
∇f |γ(t), γ′(t)

〉
, and has greatest magnitude

when the tangent vector γ′(t) to the curve and the gradient ∇f |γ(t) are parallel. When this happens, the derivative
reaches its maximum at ‖∇f |γ(t)‖ · ‖γ′(t)‖.

Since ‖∇bc‖ = 1 anywhere by Lemma 4.6, the derivative of bc along γ at γ(t) is bounded by ‖γ′(t)‖. We are
interested in the case where γ(θ) is the circle in P(2) defined by tracing Q(θ/2)pQ(θ/2)T for all −π < θ ≤ π.
By Corollary 4.1, we know that this circle has radius GA(p) and lies entirely within a submanifold of constant
determinant, which by Lemma 4.5 also has constant curvature κ = −1/2.

This implies that

‖γ′(θ)‖ =
1√
−κ

sinh(
√
−κ r) =

√
2 sinh

(
GA(p)√

2

)
.

for any value of θ ∈ (−π, π] [6, I.6]. Then

|bc(p)− bc′(p)| = |bc(p)− bc(QT pQ)| ≤ |θ| ·
√

2 sinh
(

GA(p)√
2

)
.

We can now state our main Lipschitz result in P(2).

Theorem 4.2. For Q ∈ SO(2) corresponding to θ/2, and let γ(t) = etA and γ′(t) = etQ
TAQ. Then for any p ∈ X

|bγ(p)− bγ′(p)| ≤ |θ| ·
√

2 sinh
(
dX√

2

)
.

4.3 Generalizing to P(n)

Now to generalize to P(n) we need to decompose the projection operation πF (·) and the rotation matrix Q. We can
compute πF recursively, and it turns out that this fact helps us to break down the analysis of rotations. Since we can
decompose any rotation into a series of 2 × 2 rotation matrices, decomposing the computation of πF in a similar
manner lets us build a Lipschitz condition for P(n).

Lemma 4.8. Let F ⊂ P(n) be the flat containing diagonal matrices, let r + s = n, and let πF,r and πF,s be the
projection operations for r × r and s× s flats of diagonal matrices, respectively. Then

πF (p) =
(
πF,r(hr)

πF,s(ps)

)
,

where ps is the lower right s× s block of p, and hr is the Schur complement of ps.

Proof. πF is computed by decomposing p into ν−1fν−T , where f is diagonal (and positive-definite) and ν is upper-
triangular, with ones on the diagonal. This can be done by computing the Schur complement of some lower right
square block of p, and putting the complement in the upper right block of a new matrix, with the lower block in the
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other corner. The original matrix can be reconstructed by conjugating by an upper-triangular matrix of appropriate
form:

p =
(
pr a
aT ps

)
=
(
Ir ap−1

s

Is

)(
hr

ps

)(
Ir

p−1
s aT Is

)
.

Performing this process recursively yields a product of upper-triangular matrices with ones on the diagonal, which
is again an upper-triangular matrix with ones on the diagonal, yielding ν, and a diagonal matrix, f = πF (p).

If we wish to compute πF (p) for other flats, then we can apply the rotation of F to p, compute using the recursive
formula described above, and then apply the opposite rotation to the resulting diagonal matrix. Most of the time,
however, it is most convenient to condition our data so that πF is computed for a diagonal flat F .

We now wish to analyze a simpler form of rotation, one that can be broken into rotations on separate axes.

Lemma 4.9. Given a point p ∈ P(n), a rotation matrix Q =
(
Qr

Qs

)
, such that r + s = n and Qr, Qs are

r × r, s× s rotation matrices, respectively, and a geodesic c(t) = etQAQ
T

with A =
(
Ar

As

)
sorted-diagonal,

bc(p) = − tr(Ar log(πF,r(QTr hrQr)))− tr(As log(πF,s(QTs psQs))).

Proof. From Lemma 4.2 we know that bc(p) = − tr(A log(πF (QT pQ))). Compute πF (QT pQ) by first decompos-

ing p 7→
(
pr a
aT ps

)
:

QT pQ =
(
QTr

QTs

)(
pr a
aT ps

)(
Qr

Qs

)
=
(
QTr prQr QTr aQs
QTs a

TQr QTs psQs

)
.

Now compute the Schur complement of QTs psQs:

QTr prQr −QTr aQs(QTs psQs)−1QTs a
TQr = QTr prQr −QTr aQsQTs p−1

s QsQ
T
s a

TQr

= QTr prQr −QTr ap−1
s aTQr

= QTr (pr − ap−1
s aT )Qr.

But hr = pr − ap−1
s aT is just the Schur complement of ps, so

bc(p) = − tr(A log(πF (QT pQ))) = − tr
(
Ar log(πF,r(QTr hrQr))

As log(πF,s(QTs psQs))

)
= − tr(Ar log(πF,r(QTr hrQr)))− tr(As log(πF,s(QTs psQs))).

This allows us to break the Lipschitz bound into smaller pieces that we can analyze individually. The following
two corollaries give us a way to analyze the effects of 2× 2 rotation matrices:

Corollary 4.2. Given a point p ∈ P(n), a rotation matrix Q =

Ir Q′

Is

 , where r+ s+ 2 = n, Q′ is a 2× 2

rotation matrix corresponding to an angle of θ/2, geodesics c(t) = etA and c′(t) = etQAQ
T

, then |bc(p)− bc′(p)| is
bounded as in Lemma 4.7.

Proof. This is easily seen after observing that Ir and Is are also rotation matrices, so Lemma 4.9 can be applied
twice.
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Corollary 4.3. The results of Corollary 4.2 extend to rotations between any two coordinates, that is, where Q′ is of
the form cos(θ/2) − sin(θ/2)

It
sin(θ/2) cos(θ/2)

 .

Proof. First observe that a rotation matrixQi,j that rotates between axes i and j is equal to a matrixEi+1,jQi,i+1E
T
i+1,j ,

where Ei,j is a permutation that moves row i to row j and shifts the intervening rows up. We assume E = Ei+1,j ,
Q′ = Qi,i+1, and Q = EQ′ET from here on.

Assuming that A is sorted-diagonal, we can compute bc′(p) as:

bc′(p) = − tr((EQ′ET )A(EQ′ET )T log(((EQ′ET )ν−1(EQ′ET )T )p((EQ′ET )ν−1(EQ′ET )T )T ))

= − tr((ETAE) log((ET ν−1E)Q′T (ET pE)Q′(ET ν−1E)T ))

= − tr(Â log(ν̂−1Q′T p̂Q′ν̂−T ))

= − tr(Â log(πF̂ (Q′T p̂Q′))),

which can be computed as above; some care must be taken, however, since the order of elements of Â is different
than that of A. That is, in certain places, the Schur complement of the upper corner must be taken to compute πF̂ ,
rather than that of the lower corner.

4.3.1 A Lipschitz condition on Busemann functions in P(n)

We are now ready to prove the main Lipschitz result in P(n). We start with a more specific bound that depends on
the distance from a point p to I:

Lemma 4.10. Given a point p ∈ P(n), a rotation matrix Q ∈ SO(n) corresponding to an angle of θ/2, geodesics
c(t) = etA and c′(t) = etQAQ

T
,

|bc(p)− bc′(p)| ≤ |θ| ·
(
n

2

)
·
√

2 sinh
(
d(p, I)√

2

)
.

Proof. Every rotation Q may be decomposed into a product of rotations Q = Q1Q2 . . . Qk where k =
(
n
2

)
and Qi

is a 2× 2 sub-block rotation corresponding to an angle of θi/2 with |θi| ≤ |θ|. Then

|bc(p)− bc′(p)| =

∣∣∣∣∣
k∑
i=1

(bi−1
c′ (p)− bic′(p))

∣∣∣∣∣ ≤
k∑
i=1

|bi−1
c′ (p)− bic′(p)|,

where b0c′(p) = bc(p) and bic′(p) is bc(p) with the first i rotations successively applied, so if Q′i =
∏i
j=1Qj ,

bic′(p) = bc((Q′i)
T p(Q′i)).

But then

|bi−1
c′ (p)− bic′(p)| ≤ |θi| ·

√
2 sinh

(
d(p, I)√

2

)
,

and therefore

|bc(p)− bc′(p)| ≤

(
k∑
i=1

|θi|

)
·
√

2 sinh
(
d(p, I)√

2

)
≤ |θ| ·

(
n

2

)
·
√

2 sinh
(
d(p, I)√

2

)
,

since for all i we have |θi| ≤ |θ|.
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We can now state our main Lipschitz result in P(n).

Theorem 4.3 (Lipschitz condition on Busemann functions in P(n)). Consider a set X ⊂ P(n), a rotation matrix
Q ∈ SO(n) corresponding to an angle θ/2, geodesics c(t) = etA and c′(t) = etQAQ

T
. Then for any p ∈ X

|bc(p)− bc′(p)| ≤ |θ| ·
(
n

2

)
·
√

2 sinh
(
dX√

2

)
.

4.4 Algorithm

For X ⊂ P(n) we can construct ε-ball hull as follows. We place a grid Gε on SO(n) so that for any Q′ ∈ SO(n),
there is another Q ∈ Gε such that the angle between Q and Q′ is at most (ε/2)/(2

(
n
2

)√
2 sinh(dX/

√
2)). For each

Q ∈ Gε, we consider πF (X), the projection of X into the associated n-flat F associated with Q. Within F , we
construct a convex hull of πF (X), and return the horoball associated with each hyperplane passing through each
facet of the convex hull, as in Lemma 4.3.

To analyze this algorithm we can now consider any direction Q′ ∈ SO(n) and a horofunction bc′ that lies in
the associated flat F ′. There must be another direction Q ∈ Gε such that the angle between Q and Q′ is at most
(ε/2)/(2

(
n
2

)√
2 sinh(dX/

√
2)). Let bc be the similar horofunction to bc′ , except it lies in the flat F associated with

Q. This ensures that for any point p ∈ X , we have |bc′(p)− bc(p)| ≤ ε/2. Since Ec′(X) depends on two points in
X , and each point changes at most ε/2 from bc′ to bc we can argue that |Ec′(X) − Ec(X)| ≤ ε. Since this holds
for any direction Q′ ∈ SO(n) and for Q ∈ Gε the function Ec(X) is exact, the returned set of horoballs defines an
ε-ball hull.

Since (with constant n) the grid Gε is of size O((sinh(dX)/ε)n−1) and computing the convex hull in each flat
takes O(N bn/2c +N logN) time this proves Theorem 4.1.

5 Center Points

In Euclidean space a center point p of a set X ⊂ R
¯
d of size N has the property that any halfspace that contains p

also contains at least N/(d + 1) points from X . Center points always exist [22] and there exists several algorithms
for computing them exactly [15] and approximately [10, 20].

We cannot directly replicate the notion of center points in P(n) with horoballs. Instead we replace it with a slightly
weaker notion, which is equivalent in Euclidean space. A horo-center point p of a set X ⊂ P(n) (or R

¯
d) of size

N has the property that any horoball that contains more than Nd/(d + 1) points must contain p, where we define
d = n(n+ 1)/2 so that P(n) is a d-dimensional manifold.

Construction for no center point in P(n). Analogous to Euclidean center points, a center point p ofX ⊂ P(n)
of N points has the property that any horoball that contains p must also contain at least N/(d+ 1) points from X .

Theorem 5.1. For a set X ⊂ P(n) there may be no center point.

Proof. Consider a set of distinct points X ∈ P(n) such that all points X lie on a single geodesic α between x1

and xN where x1, xN ∈ X . Furthermore, let the points lie in a hyperbolic submanifold of P(n). Now, for any
point p not on α there is a horoball that contains p but contains none of X . So if there is a center point, it must
lie on α. However, also for any point p ∈ α there is a horoball that intersects α at only p, since the cross-section
of any horoball in the hyperbolic submanifold will be strictly convex (it can be represented as a hyperball in the
Poincaré model, and geodesics are circular arcs, so there is a horoball tangent to the geodesic at one point). Thus
for any possible center point p there is a horoball that contains at most 1 point of X . Hence, there can be no center
point.
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Horo-center points in P(n). The “simple” proof of the existence of center points [19] uses Helly’s theorem to
show that a horo-center point always exist, and then in Euclidean space a halfspace separation theorem can be used
to show that a horo-center point is also a center point. We replicate the first part in P(n), but cannot replicate the
second part because horoballs do not have the proper separation properties when not defined in R

¯
d.

Theorem 5.2. Any set X ⊂ P(n) has a horo-center point.

Proof. We use the following Helly Theorem on Cartan-Hadamard manifolds (which include P(n)) of dimension
d [17]. For a family F of closed convex sets, if any set of d + 1 sets from F contain a common point, then the
intersection of all sets in F contain a common point.

In P(n) we consider the family F of closed convex sets defined as follows. A set F ∈ F is defined by a horofunc-
tion bc and a subset X ′ ⊂ X of size greater than Nd/(d + 1) such that X ′ is the intersection of X and a horoball
Br(bc). Then F = B(X ′) is the ball hull of X ′, so F ⊂ Br(bc) and F is compact.

We can argue that any set of d+ 1 sets from F must intersect. We can count the number of points not in any d+ 1
sets as

S <
d+1∑
i=1

(N −Nd/(d+ 1)) =
d+1∑
i=1

(N(1/(d+ 1)) = N.

So there must be at least one point in X that is in all of the d+ 1 sets. Then by the Helly-type theorem there exists a
point p such that p ∈ F for any F ∈ F.

We can now show that this point p must be a horo-center point. Any horoball that contains more than Nd/(d+ 1)
points from X contains an element of F, thus it must also contain p.

5.1 Algorithms for Horo-Center Points

We provide justification for why it appears difficult to describe an exact algorithm for constructing horocenter points
in P(n) and then provide an algorithm for an approximate horocenter point in P(n).

Before we begin we need a useful definition of a family of problems. An LP-type Problem [24] takes as input a
set of constraints H and a function ω : 2H → R

¯
that we seek to minimize, and it has the following two properties.

MONOTONICITY: For any F ⊆ G ⊆ H , ω(F ) ≤ ω(G). LOCALITY: For any F ⊆ G ⊆ H with ω(F ) = ω(G) and
an h ∈ H such that ω(G ∪ h) > ω(G) implies that ω(F ∪ h) > ω(F ). A basis for an LP-type problem is a subset
B ⊂ H such that ω(B′) < ω(B) for all proper subsets B′ of B. And we say that B is a basis for a subset G ⊆ H
if ω(B) = ω(G) and B is a basis. The cardinality of the largest basis is the combinatorial dimension of the LP-type
problem. LP-type problems with constant combinatorial dimensions can be solved in time linear in the number of
constraints [7].

Lemma 5.1. A set H of horoballs in P(n), and a function ω(G) = minp∈T
H

det(p) is an LP-type problem with
constant combinatorial dimension.

Proof. Monotonicity holds since in adding more horoballs to the a set F ⊂ H to get a set G ⊂ H (i.e. so F ⊂ G)
we have

⋂
G ⊆

⋂
F .

To show locality, we consider subsets F ⊆ G ⊆ H such that ω(F ) = ω(G). Let P be the set of points
{p ∈ P(n) | ω(p) = minq∈T

G
ω(q)}. Adding a constraint (a horoball) h to G only causes ω(G ∪ h) > ω(G) if

P ∩ h = ∅ and thus P ∩ (
⋂
G∪h) = ∅. Since

⋂
G ⊂

⋂
F , then also P ∩ (

⋂
F∪h) = ∅ and ω(F ∪ h) > ω(F ).

We now show that our problem has combinatorial dimension d = n(n+ 1)/2. P(n) is a d-dimensional manifold.
Each constraint (a horosphere) is a (d− 1)-dimensional sub-manifold of P(n). Thus let p∗ = arg minp∈T

F
ω(p). If

a constraint h lies in the the basis B ⊂ F , then p∗ must lie on the corresponding horosphere. Hence, this reduces the
problem by 1 dimension. And each subsequent horosphere h′ we add to the basis, must also include p∗, so it must
intersect h (and all other horospheres in the basis) transversally, reducing the dimension by 1. (If h, h′ ∈ B do not
intersect transversally, then we can remove either one from the basis without changing p.) This process can only add
d horospheres to B because P(n) is d-dimensional, thus the maximum basis size is d.
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This lemma suggests the following algorithm for constructing a horo-center point. Consider all subsets X ′ ⊂
X of Nd/(d + 1) points, find the minimal horoball(s) which contain X ′. Each of these horoballs can then be
seen as a constraint for the LP-type problem. Then we solve the LP-type problem, returning a horo-center point.
Unfortunately, there is no finite bound on the number of horoballs defined by a subset X ′. Theorem 3.2 indicates
that it could be infinite. Thus there are an infinite number of constraints that may need to be considered.

In order to approximate the horocenter point, we use a similar approach as we did to approximate the ball hull.
We discretize the set of directions, and create a finite family of constraints for each direction. Then we can solve the
associated LP-type problem to find a horo-center point.

More formally, we place a grid Gε on SO(n) so that for any Q′ ∈ SO(n) there is another Q ∈ Gε such that the
angle between Q′ and Q is at most ε/(

(
n
2

)
2
√

2 sinh(dX/
√

2)). For each c corresponding to Q ∈ Gε, we consider
πF (X), the projection of X onto the (d − 1)-flat F corresponding to Q. Within F , we can consider all subsets
X ′ ⊂ Xof Nd/(d + 1) points and find the hyperplanes defining the convex hull of πF (X ′). This finite set of
hyperplanes corresponds to a finite set of horoballs which serve as constraints for the LP-type problem in P(n).

We say a point p̂ is an ε-approximate horo-center point if there is a horo-center point p such that for any horo-
function bc we have |bc(p)− bc(p̂)| ≤ ε.

Lemma 5.2. A point p̂ that satisfies all of the constraints defined by X and Gε is an ε-approximate horo-center
point of X .

Proof. Let C(X) ⊂ P(n) be the set of horo-center points. Assume that p̂ /∈ C(X), otherwise let p = p̂ and we are
done.

We show the existence of a specific nearby horo-center point p with the following property. Let c be the geodesic
connecting p̂ and p, and let p = maxp′∈C(X) bc(p′). For any q ∈ ∂C(X) let α be the geodesic connecting q and p̂.
If q = arg maxp′∈C(X) bα(p′), we are done, if not, let qα ∈ ∂C(X) such that qα = arg maxp′∈C(X) bα(p′). Then
the geodesic ray on C(X) that goes from q to qα describes a flow on C(X). We can see that the fixed point of this
flow is p, because as we move to q̄ in the direction of this flow, bα gets closer to is maximum, and the geodesic on
P(n) from p̂ to q̄ is closer to direction defining the horofunction that q̄ maximizes.

Now, we can show that bc(p̂)− bc(p) = δ ≤ ε. This follows by Theorem 4.3 since there must be another direction
Q ∈ Gε where the corresponding flat contains a geodesic c′ such that there are more than Nd/(d+ 1) points x ∈ X
such that bc′(x) < bc′(p̂) and |bc(x) − bc′(x)| ≤ ε. Thus there are more than Nd/(d + 1) points x ∈ X such that
bc(x)− ε < bc(p̂), and there must be exactly bNd/(d+ 1) + 1c points x ∈ X such that bc(x) < bc(p). Since p̂ and
p lie on the geodesic c, we have δ ≤ ε.

We can now use Lemma 4.6 to bound the difference in values for any horofunction. ||∇bc|| is constant for any
bc, hence for any other horofunction bc′ we have |bc′(p̂)− bc′(p)| ≤ |bc(p̂)− bc(p)| ≤ ε (where they are only equal
when c and c′ asymptote at opposite points). Since p is a horo-center point, this concludes the proof.

When constructing the set of constraints in each flat F corresponding to a direction in Gε we do not need to
explicitly consider all

(
N

Nd/(d+1)

)
subsets of X . Each constraint only depends on n points in X , so we can instead

consider
(
N
n

)
= O(Nn) subsets of X of size n, and then check if either of the halfspaces it defines in F contain at

least Nd/(d+ 1) points from X in O(N) time. Only these constraints need to be considered in the definition of p̂.

Theorem 5.3. Given a set X ⊂ P(n) of size N , (for n constant) we can construct an ε-approximate horo-center
point in time O((sinh(dX)/ε)n−1Nn+1) time.

Proof. As per the above construction, for each Q ∈ Gε we only need to consider O(Nn) potential constraints,
and each takes O(N) time to evaluate. By Lemma 4.7 Gε is of size O((sinh(dX)/ε)n−1) so the total number
of constraints we need to consider in the LP-type problem is O((sinh(dX)/ε)n−1Nn). The total runtime is thus
dominated by constructing the constraints and takes O((sinh(dX)/ε)n−1Nn+1) time.
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